Rotational Motion Question 106

Question: The centre of mass of a non-uniform rod of length $ L $ whose mass per unit length $ \lambda $ varies as $ \lambda =\frac{k.x^{2}}{L} $ where k is a constant and x is the distance of any point on rod from its one end, is (from the same end)

Options:

A) $ \frac{3}{4}L $

B) $ \frac{1}{4}L $

C) $ \frac{k}{L} $

D) $ \frac{3k}{L} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a]

$ \therefore x _{c m} \frac{\int_0^L \frac{K}{L} x^2 d x \cdot x}{\int_0^L \frac{K}{L} x^2 d x}=\frac{\left.\frac{x^4}{4}\right|_0 ^L}{\left.\frac{x^3}{3}\right|_0 ^L}=\frac{3}{4} L $



NCERT Chapter Video Solution

Dual Pane