Laws Of Motion Question 324

Question: The force required to just move a body up the inclined plane is double the force required to just prevent the body from sliding down the plane. The coefficient of friction is$ \mu $ . The inclination $ \theta $ of the plane is

Options:

A) $ {{\tan }^{-1}}\mu $

B) $ {{\tan }^{-1}}( \mu /2 ) $

C) $ {{\tan }^{-1}}2\mu $

D) $ {{\tan }^{-1}}3\mu $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] In case [a] In case [b] $ mg\sin \theta ={{F} _{1}}-\mu N$

$\text{N=mg sin}\theta \text{ }\therefore \text{mg sin}\theta \text{+}\mu \text{mg cos}\theta \text{=}{{\text{F}} _{1}}$

$ \text{In second case }\left( b \right)$

$\mu N+{{F} _{2}}=\text{mg sin}\theta$

$\Rightarrow \mu \text{mg cos}\theta -{{F} _{2}}=mg\sin \theta $

$\text{or }{{F} _{2}}=mg\sin \theta -\mu mg\cos \theta \text{ but }{{F} _{1}}=2{{F} _{2}}$

$\text{therefore mg sin}\theta +\mu mg\cos \theta $

$=2\left( mg\sin \theta -\mu mg\cos \theta \right)$

$mg\sin \theta =3\mu mg\cos \theta $

$ \text{or }\tan \theta =3\mu \text{ or }\theta \text{=ta}{{\text{n}}^{-1}}\left( 3\mu \right)$

[d]



NCERT Chapter Video Solution

Dual Pane