Kinematics Question 637

Question: The position of a projectile launched from the origin at $ t=0 $ it’s given by $ \vec{r}=(40\hat{i}+50\hat{j})m $ at 2s. If the projectile was launched at an angle $ \theta $ from the horizontal, then $ \theta $ it’s (take $ \text{g = 10 m}{{\text{s}}^{-2}} $ )

Options:

A) $ {{\tan }^{-1}}\frac{2}{3} $

B)$ {{\tan }^{-1}}\frac{3}{2} $

C) $ {{\tan }^{-1}}\frac{7}{4} $

D)$ {{\tan }^{-1}}\frac{4}{5} $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] From question,

Horizontal velocity (initial), $ {{\text{u}} _{\text{x}}}\text{=}\frac{\text{40}}{\text{2}}\text{=20 m/s} $

Vertical velocity (initial),$ \text{50=}{{\text{u}} _{\text{y}}}\text{t+}\frac{\text{1}}{\text{2}}\text{g}{{\text{t}}^{\text{2}}} $

$ \Rightarrow {{\text{u}} _{\text{y}}}\times 2+\frac{1}{2}( -10 )\times 4;\text{ or, }{{u _{y}}}=\frac{70}{2}=35\text{ m/s;} $

$ \therefore \tan \theta =\frac{{{\text{u}} _{\text{y}}}}{{{\text{u}} _{\text{x}}}}=\frac{35}{20}=\frac{7}{4}\Rightarrow \text{ Angle}\theta \text{=}\text{ta}{{\text{n}}^{-1}}\frac{7}{4} $



NCERT Chapter Video Solution

Dual Pane