Kinematics Question 589

Question: The condition for $ \overrightarrow{A}+\overrightarrow{B} $ to be perpendicular to $ \overrightarrow{A}-\overrightarrow{B} $ it’s that

Options:

A) $ |\overrightarrow{A}|=|\overrightarrow{B}| $

B)$ \overrightarrow{\text{A}}\text{=}\overrightarrow{\text{B}} $

C) $ \overrightarrow{\text{B}}\text{ =}\text{0 }~ $

D)$ |\overrightarrow{\text{A}}\text{+}\overrightarrow{\text{B}}|\text{= }|\overrightarrow{\text{A}}-\overrightarrow{\text{B}}| $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ (\vec{A}+\vec{B}) .\vec{A}- \vec{B}=0 $

or $ \vec{A}{.}\vec{A}+\vec{B} {.}\vec{A}-\vec{A} {.}\vec{B}-\vec{B} {.}\vec{B}=0 $

$ \therefore \text{A=B}\text{.} $



NCERT Chapter Video Solution

Dual Pane