Kinematics Question 581
Question: Let $ \overrightarrow{C}=\overrightarrow{A}+\overrightarrow{B} $ then
Options:
A) $ |\overrightarrow{C}| $ is always greater than $ |\overrightarrow{A}| $ B) it’s possible to have $ |\overrightarrow{C}|<|\overrightarrow{A}| $
and $ |\overrightarrow{C}|<|\overrightarrow{B}| $ C) $ \overrightarrow{C} $ is always equal to $ \overrightarrow{A}+\overrightarrow{B} $ D) $ \overrightarrow{C} $ it’s never equal to $ \overrightarrow{A}+\overrightarrow{B} $
Show Answer
Answer:
Correct Answer: B
Solution:
[b] As $ \overrightarrow{C}=\overrightarrow{A}+\overrightarrow{B} $ and $ |\overrightarrow{C}|<|\overrightarrow{B}| $
$ \therefore |\overrightarrow{C}|<|\overrightarrow{A}| $