Kinematics Question 484

Question: The kinetic energy $ k $ of a particle moving along a circle of radius $ R $ depends on the distance covered $ s $ as $ k=as^{2} $ where $ a $ it’s a constant. The force acting on the particle is [MNR 1992; JIPMER 2001, 02; AMU (Engg.) 1999]

Options:

A) $ 2a\frac{s^{2}}{R} $

B) $ 2as{{( 1+\frac{s^{2}}{R^{2}} )}^{1/2}} $

C) $ 2as $

D) $ 2a\frac{R^{2}}{s} $

Show Answer

Answer:

Correct Answer: B

Solution:

According to given problem $ \frac{1}{2}mv^{2}=as^{2} $

$ \Rightarrow v=s\sqrt{\frac{2a}{m}} $

So $ a _{R}=\frac{v^{2}}{R}=\frac{2as^{2}}{mR} $ -(i)

Further more as $ a _{t}=\frac{dv}{dt}=\frac{dv}{ds}\cdot \frac{ds}{dt}=v\frac{dv}{ds} $ -(ii)

(By chain rule) Which in light of equation (i) i.e. $ v=s\sqrt{\frac{2a}{m}} $

yields $ a _{t}=[ s\sqrt{\frac{2a}{m}} ][ \sqrt{\frac{2a}{m}} ]=\frac{2as}{m} $ -(iii)

So that $ a=\sqrt{a _{R}^{2}+a _{t}^{2}}=\sqrt{{{[ \frac{2as^{2}}{mR} ]}^{2}}+{{[ \frac{2as}{m} ]}^{2}}} $

Hence $ a=\frac{2as}{m}\sqrt{1+{{[s/R]}^{2}}} $

$ F=ma=2as\sqrt{1+{{[s/R]}^{2}}} $



NCERT Chapter Video Solution

Dual Pane