Kinematics Question 371

Question: A car, starting from rest, accelerates at the rate through a distance S, then continues at constant speed for time t and then decelerates at the rate $ \frac{f}{2} $ to come to rest. If the total distance traversed it’s 15 S, then

Options:

A) $ \text{S=}\frac{1}{6}f{{t}^{2}} $

B) $ \text{S=ft} $

C) $ \text{S=}\frac{1}{4}f{{t}^{2}} $

D) $ \text{S=}\frac{1}{72}f{{t}^{2}} $

Show Answer

Answer:

Correct Answer: D

Solution:

distance from A to B = $ S=\frac{1}{2}ft _{1}^{{}} $ distance from B to C = $ ( ft _{1} )t $ distance from C to D = $ \frac{u^{2}}{2a}=\frac{{{( ft _{1} )}^{2}}}{2( f/2 )} $

$ ft _{1}^{2}=2S $

$ \Rightarrow S+ft _{1}t+2S=15S $

$ \Rightarrow ft _{1}t+12S\text{ }…..\text{(i)} $

$ \frac{1}{2}ft _{1}^{2}=S $ Dividing (i) by (ii), we get $ t _{1}=\frac{t}{6} $

$ \Rightarrow S=\frac{1}{2}f{{( \frac{t}{6} )}^{2}}=\frac{ft^{2}}{72} $



NCERT Chapter Video Solution

Dual Pane