Electrostatics Question 695

Question: Two identical beads each have a mass m and charge q. When placed in a hemispherical bowl of radius R with frictionless, nonconductive walls, the beads move, and at equilibrium the distance between them is R (Fig.). Determine the charge on each bead.

Options:

A) $ R{{( \frac{mg}{k _{e}\sqrt{3}} )}^{1/2}} $

B) $ R{{( \frac{mg}{k _{e}\sqrt{2}} )}^{1/2}} $

C) $ R{{( \frac{mg}{k _{e}2\sqrt{3}} )}^{1/2}} $

D) $ R{{( \frac{2mg}{k _{e}\sqrt{3}} )}^{1/2}} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] The bowl exerts a normal force N on each bead, directed along the radial line or at

$ 60.0{}^\circ $ above the horizontal.

Consider the free-body diagram of the bead on the left with electric force $ F _{e} $ applied: $ \Sigma F _{y}=N\sin 60{}^\circ -mg=0 $

$ \Rightarrow N=\frac{mg}{\sin 60{}^\circ } $

$ \Sigma F _{x}=-F _{e}+N\cos 60{}^\circ =0 $

$ \Rightarrow \frac{k _{e}q^{2}}{R^{2}}=N\cos 60{}^\circ =\frac{mg}{\tan 60{}^\circ }=\frac{mg}{\sqrt{3}} $

$ k _{e}=\frac{1}{4\pi {\varepsilon _{0}}}\approx 9.0\times 10^{9}Nm^{2}/C^{2}\therefore q=R{{( \frac{mg}{k _{e}\sqrt{3}} )}^{1/2}} $



NCERT Chapter Video Solution

Dual Pane