Electrostatics Question 245

Question: Three positive charges of equal value q are placed at the vertices of an equilateral triangle. The resulting lines of force should be sketched as in [IIT-JEE (Screening) 2001]

Options:

A) $ \frac{q}{2{{\pi }^{2}}{\varepsilon _{0}}R^{2}} $

B) $ \frac{q}{4{{\pi }^{2}}{\varepsilon _{0}}R^{2}} $

C) $ \frac{q}{4\pi {\varepsilon _{0}}R^{2}} $

D) $ \frac{q}{2\pi {\varepsilon _{0}}R^{2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ dl=Rd\theta $ ; Charge on $ dl=\lambda Rd\theta $

$ { \lambda =\frac{q}{\pi R} } $

Electric field at centre due to dl is $ dE=k.\frac{\lambda Rd\theta }{R^{2}} $ .

We need to consider only the component $ dE\cos \theta , $ as the component dE sinq will cancel out because of the field at C due to the symmetrical element dl¢.

Total field at centre $ =2\int _{0}^{\pi /2}{dE\cos \theta } $

$ =\frac{2k\lambda }{R}\int _{0}^{\pi /2}{\cos \theta d\theta }=\frac{2k\lambda }{R}=\frac{q}{2{{\pi }^{2}}{\varepsilon _{0}}R^{2}} $

Alternate method : As we know that electric field due to a finite length charged wire on it’s perpendicular bisector is given by $ E=\frac{2k\lambda }{R}\sin \theta . $

If it is bent in the form of a semicircle then $ \theta =\text{ 9}0{}^\circ $

therefore $ E=\frac{2k\lambda }{R} $ = $ 2\times \frac{1}{4\pi {\varepsilon _{0}}}( \frac{q/\pi R}{R} ) $ = $ \frac{q}{2{{\pi }^{2}}{\varepsilon _{0}}R^{2}} $



NCERT Chapter Video Solution

Dual Pane