Electro Magnetic Induction And Alternating Currents Question 167

Question: Determine the rms value of a semi-circular current wave which has a maximum value of a.

Options:

A) $ (1\sqrt{2})a $

B) $ (\sqrt{3/2})a $

C) $ (\sqrt{2/3})a $

D) $ (\sqrt{1/3})a $

Show Answer

Answer:

Correct Answer: C

Solution:

  • The equation of a semi - circular wave is

    $ x^{2}+y^{2}=a^{2} $

    or $ y^{2}=a^{2}-x^{2} $

    $ I _{rms}=\sqrt{\frac{1}{2a}\int _{-a}^{+a}{y^{2}dx}} $

    $ I^{2} _{rms}=\frac{1}{2a}\int _{-a}^{+a}{(a^{2}-x^{2})dx} $

    $ =\frac{1}{2a}\int _{-a}^{+a}{(a^{2}-x^{2}})dx=\frac{1}{2a}| a. ^{2}x-\frac{x^{3}}{3} | . _{-a}^{+a} $

    $ =\frac{1}{2a}( a^{3}-\frac{a^{3}}{3}+a^{3}-\frac{a^{3}}{3} )=\frac{2a^{2}}{3} $

    $ I _{rms}=\sqrt{\frac{2a^{2}}{3}}=\sqrt{\frac{2}{3}}a $



NCERT Chapter Video Solution

Dual Pane