Atoms And Nuclei Question 440

Question: According to Bohr’s theory, the expressions for the kinetic and potential energy of an electron revolving in an orbit is given respectively by

Options:

A) $ +\frac{e^{2}}{8\pi {\varepsilon_{0}}r} $ and $ -\frac{e^{2}}{4\pi {\varepsilon_{0}}r} $

B) $ +\frac{8\pi {\varepsilon_{0}}e^{2}}{r} $ and $ -\frac{4\pi {\varepsilon_{0}}e^{2}}{r} $

C) $ -\frac{e^{2}}{8\pi {\varepsilon_{0}}r} $ and $ -\frac{e^{2}}{4\pi {\varepsilon_{0}}r} $

D) $ +\frac{e^{2}}{8\pi {\varepsilon_{0}}r} $ and $ +\frac{e^{2}}{4\pi {\varepsilon_{0}}r} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • P.E. $ =-\frac{ke^{2}}{r}=-\frac{e^{2}}{4\pi {\varepsilon_{0}}r} $ ; K.E. $ =-\frac{1}{2}(P\text{.E}\text{.})=\frac{e^{2}}{8\pi {\varepsilon_{0}}r} $


NCERT Chapter Video Solution

Dual Pane