Atoms And Nuclei Question 410

Question: The count rate from a radioactive sample falls from $ 4.0\times 10^{6} $ per second to $ 1\times 10^{6} $ per second in 20 hour. What will be the count rate, 100 hour after the beginning?

Options:

A) $ 3.91\times 10^{3}se{{c}^{-1}} $

B) $ 5.81\times 10^{4}se{{c}^{-1}} $

C) $ 6.22\times 10^{5}se{{c}^{-1}} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • If $ A_{0} $ is the initial activity of radioactive sample then activity at any time $ A=A_{0}{{e}^{-\lambda t}} $

or $ 1\times 10^{6}=4\times 10^{6}{{e}^{-\lambda \times 20}} $

or $ {{e}^{-20\lambda }}=\frac{1}{4} $ The count rate after 100 hour is given by $ A’=A_{0}{{e}^{-\lambda \times 100}}=A_{0}{{e}^{-100\lambda }}=A_{0}{{[{{e}^{-20\lambda }}]}^{5}} $

$ =4\times 10^{6}{{[ \frac{1}{4} ]}^{5}}=3.91\times 10^{3} $ per second



NCERT Chapter Video Solution

Dual Pane