Atoms And Nuclei Question 358

Question: A radioactive material of half-life ln2 was produced in a nuclear reactor. Consider two different instants A and B. The number of undecayed nuclei at instant B was twice of that of instant A. If the activities at instants A and B are $ A_{1} $ and $ A_{2} $ respectively then the difference in the age of the sample at these instants equals.

Options:

A) $ | \ell n( \frac{2A_{1}}{A_{2}} ) | $

B) $ \ell n2| \ell n( \frac{A_{1}}{A_{2}} ) | $

C) $ | \ell n( \frac{A_{1}}{2A_{2}} ) | $

D) $ \ell n2| \ell n( \frac{A_{1}}{A_{2}} ) | $

Show Answer

Answer:

Correct Answer: C

Solution:

  • $ A_{1}=(\lambda N_{0}){{e}^{-\lambda t_{1}}} $ …..(i) $ A_{2}=(\lambda 2N_{0}){{e}^{-\lambda t_{2}}} $ ….(ii) $ t_{1}-t_{2}=\frac{1}{\lambda }\ell n( \frac{A_{2}}{2A_{1}} )=\ell n( \frac{A_{2}}{2A_{1}} ) $


NCERT Chapter Video Solution

Dual Pane