Chemical Thermodynamics Question 360

Question: Given that

(i) $ {\Delta_{f}}H{}^\circ $ of $ N_2O $ is $ 82kJmo{{l}^{-1}} $

(ii) Bond energies of $ N\equiv N,N=N,O=O $ and $ N=O $ are 946, 418, 498 and $ 607kJmo{{l}^{-1}} $ respectively, The resonance energy of $ N_2O $ is:

Options:

A) $ -88kJ $

B) $ -66kJ $

C) $ -62kJ $

D) $ ~-,44,kJ $

Show Answer

Answer:

Correct Answer: A

Solution:

  • $ N_2(g)+\frac{1}{2}O_2\to N_2O(g) $

$ N\equiv N( g )+\frac{1}{2}( O=O )\to \underset{\scriptscriptstyle\centerdot\centerdot}{\ddot{N}}=\overset{+}{\mathop{ }},=\ddot{\underset{\scriptscriptstyle\centerdot\centerdot}{O}}( g ) $

$ \Delta H_{f}^{{}^\circ }= $ [Energy required for breaking of bonds]-[Energy released for forming of bonds] $ =(\Delta {H_{N\equiv N}}+\frac{1}{2}\Delta {H_{O=O}}-(\Delta {H_{N=N}}+\Delta {H_{N=O}}) $

$ =( 946+\frac{1}{2}\times 498 )-( 418+607 ) $

$ =170kJ,mo{{l}^{-1}} $ Resonance energy $ =82-170 $

$ =-88kJ,mo{{l}^{-1}} $



NCERT Chapter Video Solution

Dual Pane