- For $\max k \cdot (...),$
- $\omega_1=9 \times 10^{15}$
- $\text { So } f_{\text {max }} =\frac{\omega}{2 \pi}$
- $f_{\text {max }} =\frac{9 \times 10^{15}}{2 \times 3.14}$
- $ h \nu=k. E. +\phi$
- $K .E=h \nu-\phi = \frac{6.63 \times 10^{-34} \times 9.0 \times 10^{15}}{2 \times 3.14 \times 1.6 \times 10^{-19}}ev-2.0 \mathrm{eV}=(5.93-2) ev=3.93 eV$
- $k .E_{\max }=3.93 \mathrm{eV}$