Particle Nature of Light
Photons hν
Metal
hν=ϕ+k⋅ε.
Einstein's Photo electric Equation
Crystal
2dsinθ=nλ
λ=2 mevh
Max Plank (1900): First breakthrough when Max Plank introduce the concept of Quantum of energy. The black body was explained in the way that energy exchanged between radiation and matter takes place in discrete/quantized way
Einstein Photoelectric effect (1905, Nobel prize in 1921): Quantization of light in the form of photons
Bohr model (1911): Combining the quantization of energy exchange and between the levels of atom
Compton (1923): Confirm the particle nature of the light
De Brogli (1923): The wave nature of particle. So particle behave like wave
Davission and Germer (1927): Interference pattern of electron beam from crystal
λ(μm) | V (Volt) |
---|---|
0.3 | 2.0 |
0.4 | 1.0 |
0.5 | 0.4 |
Take any two Values.
λhc=ϕ+KE
kE=λhc−ϕ→(1)
1.0×1.6×10−19=0.4×10−6( m)h×3.0×108−ϕ→(3)
(2)−(3)
1.6×10−19=10−7h×3.0×108(31−41)=10−7h×3.0×108(121)
h=3.0×10812×10−7×10−19×1.6
h=6.4×10−34 J⋅sec
The electric field at a point associated with a light wave is,E=(100Vm−1)
sin[(3.0×1015s−1)t].
sin[(6.0×1015s−1)t].
If this light falls on a metal surface having a work function of 2.0eV, what will be the maximum kinetic energy of the photoelectrons?
The electric field associated with in rident light:
E=100
sin[(3.0×1015s−1)t].
sin[(6.0×1015s−1)t] = 100 ×21cos(9.0×1015t)−cos(3×1015t)
[2sinAsinB=cos(A+B)−cos(A−B)]
So ω1=9×1015/ω2=3×1015
For maxk⋅(...),
ω1=9×1015
So fmax =2πω
fmax =2×3.149×1015
hν=k.E.+ϕ
K.E=hν−ϕ=2×3.14×1.6×10−196.63×10−34×9.0×1015ev−2.0eV=(5.93−2)ev=3.93eV
k.Emax=3.93eV
λhc=k⋅ε+ϕ
k⋅ε=2mp2(p−linear momentum )
2mp2=λhc−ϕ→(1)
400×10−96.63×10−34×3.0×108−2.5×1.6×10−19=4.97×10−19−4.0×10−19
2mp2=0.97×10−19
p=0.97×10−19×2×9.1×10−31
p=4.2×10−25 kg⋅secm
λ=350 nm
ϕ=1.9ev
Max k.ε.=??
λhc=k.ε.+ϕ
k.ε.=λhc−ϕ=350×10−96.63×10−34×3.0×108J−1.9eV
=350×10−9×1.6×10−196.63×10−34×3×108eV−1.9eV
k.ε.=1.65 eV
Energy of incident Photon
=8×10155×10−3=6.25×10−19
λhc=ϕ+k⋅ε.
ϕ=λhc−kε=6.25×10−19−2×1.6×10−19
ϕ=3.05×10−19
ϕ=1.6×10−193.05×10−19=1.906 eV
The UV light of wavelength 450 nm and intensity 2.0 W/cm2 was shine on a metal surface. Calculate the amount of current flows in the outer circuit due to photoelectrons emitted from the metal surface having the area of 2cm2 considering only 5 percentage of incident photons produces photoelectrons. Consider the energy of the photons is more than the work function of the metal and efficiency to collect the photoelectrons is 100 %.
⇒ Incident Wavelength (λ)=450nm
Intensity(I)=2.0 W/cm2
=2.0 J/cm2⋅sec
No. of Photoelectron
=45.24×1017×1005=2.263×1017
Current flew in outer circuit
=n×e
=2.263×1017×1.6×10−19
=36 mA
k.ε1=0.5 eV
k.ε2=1.2 eV
λ1hc=ϕ+k.ε1−(1)∣k.ε.=0.5eV
λ2hc=ϕ+k.ε2−(2)∣k.ε.=1.2eV
ϕ= Work Function and it is the Material property
Using Equation-1
532 nmhc=ϕ+0.5ev
=532×10−6 m6.63×10−34×3.0×108
=ϕ+0.5×1.6×10−19=3.7×10−19
=ϕ+0.8×10−19
ϕ=2.9×10−19
Using Equation-2
λ2hc=ϕ+1.2ev=λ2( m)6.63×10−34×3.0×108=2.9×10−19+1.2×1.6×10−19
λ2=4.82×10−196.63×10−34×3.0×108
λ2=4.12×10−7 m
λ2=412 nm
hν=ϕ+KE.
λ1hc=ϕ+k⋅E1−(1)
λ2hc=ϕ+K⋅E2−(2)
k⋅E1=21mv12−(3)
k⋅E2=21mv22−(4)
λ1hc−ϕ=21mv12−(5)
λ2hc−ϕ=21mv22−(6)
Divide (5/6)
v22v12=λ2hc−ϕλ1hc−ϕ−(7)
(13)2=9=λ2hc−ϕλ1hc−ϕ
⇒8ϕ=λ29hc−λ1hc
8ϕ=310×10−99×6.63×10−34×3.0×108−24×10−9663×10−34×3.0×108
8ϕ=0.497×10−17/1.6×10−19
⇒ϕ=3.88ev
ϕ=4.5ev
λ=200 nm
λhc=k.E+ϕ
K.E=200×10−96.63×10−34×3.0×108−4.5×1.6×10−19
=9.945×10−19−7.2×10−19
k.E.=2.745×10−19
K.E.=1.6×10−192.745×10−19=1.7eV
So electron emitting from emitter with 1.7eV energy
So min entry will be ≃2eV (Equal to voltage applied)
Max energy =(2.0+1.7)eV=3.7eV)
V = 1.1 Volt
λ=400nm
and k⋅E=1.1ev
λhc=k⋅E+ϕ
λhc=k⋅E+λ0hc(ϕ=λ0hc)
λ0hc=λhc−k⋅E⋅−(1)
λ0hc=400×10−9m6.63×10−34×3.0×108−1.1×1.6×10−19
=4.97×10−19−1.76×10−19
=3.21×10−19
λ0=3.21×10−196.63×10−34×3.0×108
=6.20×10−7m
Wavelength of incident light =450 nm
So λhc=k⋅E.+ϕ−(1)
ϕ=2.0eV
=450×10−9 m6.63×10−34×3.0×108
=21mv2+2.0×1.6×10−19
⇒21mv2=450×10−96.63×10−34×3.0×108−2.0×1.6×10−19
=1.22×10−19[mv=2×m×1.22×10−19]
mv=2×9.1×10−31×1.22×10−19
mv=4.67×10−25 kg sec m−(1)
Now electron sent ⊥ to the magnetic field:
r=qBmv
B=q×rmv=1.6×10−19×0.24.67×10−25
B=1.46×10−5 T
The electric field associated with a light wave is given by:
E=E0sin[(1.57×107 m−1)(x−ct)].
Find the stopping potential when this light is used in an experiment on photoelectric effect with the emitter having work function 1.9eV
w=1.57×107C
f=2×3.141.57×107×3.0×108(2πw)⋅Hz
ϕ=1.9eV
so
hν=K⋅E.+ϕ
(K.E.)ele=hν−ϕ
=2×3.14×1.6×10−196.63×10−34×1.57×107×3.0×108eV−1.9
=(3.107−1.9)eV
(K.E.)electron =1.207eV
So stopping potential need to stop electron
V=1.207 Volt
Fringe width
y=1.0mm×2=2.0mm
d=0.24mm
ϕ=2.2eV
D=1.2m
y=dλD
λ=Dyd
λ=1.22×10−3×0.24×10−3
λ=4×10−7 m
E=λhc=4×10−7×1.6×10−196.63×10−34×30×108eV
E=3.105eV
Stopping potential:-
eV0=3.105−2.2=0.905eV
V0=1.6×10−190.905×1.6×10−19=0.905 V
Charge density
(σ)=1×10−9m2C
ϕ=1.9ev
λ=400nm
d=20cm=0.2m
Electric Potential due Charge plate
V=E×d
Electric field:
E=ϵ0σ
So V=ϵ0σ×d=8.85×10−12×1001×10−9×20
V=22.7 V
⇒λhc=ϕ+k⋅E.
KE=λhc−ϕ−(1)
400×10−9×1.6×10−196.63×10−34×3.0×108−1.9ev
=3.105−19
K.E.=1.205
This K.E.<<eV between the plates
So min K. E. is 22.7eV and max. K.E. =(22.7+1.205)eV
K.E.max =23.905eV
K.E.min =22.7eV
λ=400 nm
ϕ=2.2eV
E=λhC=400×10−9×1.6×10−196.63×10−34×3.0×108=3.1eV
After Collision, Energy lost.
3.1ev×10010&=0.31eV
So energy remains after 1St Collision
3.1ev−0.31ev=2.79ev
After 2nd Collision, energy lost
1002.79×10=0.279
So energy remains after 2nd collision
2.79−0.279&=2.511eV
After 3rd Collision, energy lost
1002.511×10=0.2511eV
So energy remains after 3rd Collision
(2.511−0.2511)eV2ˉ.2599eV
Energy lost after 4Th Collision
=1002.2599×10=0.22599eV
So energy remains after 4Th Collision
=2.2599−0.22599eV=2.033eV
Therefore, energy of electron after 4Th Collision is 2.033eV
Eele 4 Th <ϕmetal
So after 4Th Collision electron will not be able to Ceme out.
Energy of Photon
=λhc=50×10−9×1.6×10−196.63×10−34×3.0×108ev
=24.848 V
Energy required to remove e from
n=1 to n=∞=13.6eV
So K.E. of ele
=24.84eV−13.6eV=11.24eV
Radiation in the range of 450 nm to 550nm Energy corresponding to 4.50nm
450nm1240ev nm=2.75eV
For 550 nm :
550nm1240 ev. nm=2.26eV
The light come under visible range so transition from n=2
to n=3,4,5
So energy corresponding to these transition
E2−E3=13.6eV(41−91)=1.9eV
E2−E4=13.6×(41−161)=2.55eV
E2−E5=13.6×(41−21)=2.856eV
So only E2−E4 Comes in the range
So Wavelength Corresponding to this E
λ=2.551240ev.nm=486 nm
λ=100×10−12 m
D=40 cm
β=0.1 mm
So distance between two successive maxima
β=dλD
d=βλD=0.1×10−3100×10−12×40×10−2
d=4×10−7m
V=30kV
i=30 mA
i=ne
n=ei=1.6×10−193.0×10−3=0.625×1017
Photoelectrons per sec
k.E. of one ele.
1.6×10−19×40×103
=6.4×10−15J.
Tkϵ=0.625×6.4×10−15×1017=4.0×102J
Power emitted X-ray:
4×102×1001=4W
V=40KV=40×103 V
Energy utilized
10070×40×103=28×103
λ=Ehc=28×103eV1240ev⋅nm=44 pm
For other wave length
E=70/ (left our energy) =10070(40−28)×103=84×102
λ=Ehc=84×102 V1240ev.nm=148pm
For third Wave length
E =10070(12−8.4)×103=25.2×102
λ=Ehc=25.2×1021240 ev.nm=493pm