n=3
n=2
n=1
En∼−n2W n∈I nf=2
nf=2
ni=3,4,5
En∼n21En∼hν∼λhc
λnf,ni1=R(nf21−ni21)
R = Rydberg constant
λ2,31=R[221−321] =5R/36
λ2,41=R[221−421]=163R
λ2,3λ2,4=365R×3R16=2720 =20/27
λ2,4=6550×2720=4850A˚
↓ ↓
Hα Hβ
λnf,ni1=R(nf21−ni21)
Balmer: nf=2,ni=3→ Straight line
Lyman: nf=1,ni=2
λ2,31=365R
λ1,21=43R
λ1,2=275×λ2,3 ≈1210A˚
Assume that the velocity of an electron in the first Bohr orbit of hydrogen can be defined by Bohr's angular momentum postulate.
Find its velocity and comment if the electron is relativistic.
e=−1.6×10−19C.
ε0=8.85×10−12 F/m
h = 6.626×10−34
m2kg/s.or J-s
<ψ1∣mp^∣ψ1>
Later
L=mvr=nℏ=2πnh
n=1 , r=?
Centripetal force = Columb force
rmv2=4πε0γ2e2
mv2r=4πε0e2
r=4πε0mv2e2
mvr=4πε0ve2=2πnh
v=ε0he2→ 0.219×107m/sec
≈1373c⩽c
Non-relavistic, v≪C
Bohr radius
v=2πmrnh
Collisions knock off the lowest energy electron in a helium atom, and raise the remaining electron to various excited states.
If the resultant He+ion is irradiated with a broadband wavelength source, then find the largest wavelength that will be absorbed.
h = 6.626×10−34
m2kg/s or Js=4.14×10−15eV−s
c=3×108m/s
He:1s2
He+→ Isoelectronic
H−atom
En=Ƶ2R[nf21−ni21]
↑
Ƶ = of protons
λnf,ni1=hc22⋅(13⋅6)eVx
[121−221]
λnf,ni1=4.14×10−15×3×1084.0×13.6eV×43 m−1
λmax≈300A˚
Second
R=109678cm−1
≅10967800m−1
λnf,ni1=4R⋅43=3R
λ1,2=3R1≅300A˚