νλv
v=νλ.
E=hν;λ=ph
U=πc
π=Momentum
U = Energy density
U=nhν
n = number density
Π=n×p=cnhν=nλh
c=νλ
nλ=2dsinθ
Provided we assign
λ=,hp p = known λ=associated
p;ε⟶particle
ν;λ⟶wave
p=mv
ε=21mv2=2mp2
v=νλ
vpar vwave
E=hν=2mp2
ν→ω : angular frequency
λ→k→ Wave number
E=hν=h
2πω=hω
ω=2πν
p=λh=λ2πℏ=h(λ2π)≡hk
(ω,k)v=νλ
ω=ck→dispersion relation
ω=c(k′)k′
More subtle matters
λm=ph;νm=hE
Non -relativistic Case
E=2mp2
λmνm=VdeBroglie=(pE)
vmatterwave vmω=λmωvmω=pE=21mvmv2
v→particle
=2v
E=hν;p=λh
ν=hE;λ=ph
p=1−v2c2m0v
v=λν=pE=1−v2/c2m0c2
v=pE;
E=1−v2/c2m0c2
p=1−v/c2m0v
vwave=vparticle c2v<c
vwave>C
Early Speculations
India: Kanada (Vaisheshika School)
Greece: Democritus
England: Isaac Newton, Dalton, ...
Other Schools : The great elements (Greece, India)
Chemistry, Thermodynamics
Priestley
Lavoisier
Dalton
Mendeleev
Mary and Pierre Curie, Becquerel
Must explain chemical properties
Two major Contenders
Plum pudding model (Thompson)
Planetary Model (Rutherford)
Figure: Illustrations of Atomic models
Details
Source: 83214Bi;
Energy of α particles 5.5MeV
Target: A very thin gold foil (2.1×10−7 m)
Detector: Zinc Sulphide (scintillation) + Microscope