###
Atomics Models L-1
###
Atomic Models
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/Physics-Class-12-Unit-12-Chapter-01-Atomics-Models-L-1_9-Za8qZhTT4tk-2.jpg)
###
Atomics Models L-1
###
Rutherford Experiment
- Source: ${ }_{83}^{214} \mathrm{Bi}$; - Energy of $\alpha$ particles $5.5 \mathrm{MeV}$ - Target: A very thin gold foil $\left(2.1 \times 10^{-7} \mathrm{~m}\right)$ - Detector: Zinc Sulphide (scintillation) + Microscope
###
Atomics Models L-1
###
Modelling the Results
- **Important features:** - Most of the electrons are unscattered. They just pass through undeflected. - The number of electrons getting back scattered is relatively quite large. - **Basic assumption** - Atom has a size of in the range of angstroms
###
Atomics Models L-1
###
Rutherford Scattering
- **Au** 87 elentrons $\alpha$ particle - $ \varepsilon=5.5 \mathrm{MeV}$ - $ Q_p$ + 87 - A = 199 $ \approx $ 200 - **Scattering from a fixed target.**
###
Atomics Models L-1
###
Total Energy
- **Centre of the atom.** - $K \cdot \varepsilon_0 $ + Potential energy. - Total energy = $ K \cdot E+P \cdot E = 5.5 \mathrm{MeV}$
###
Atomics Models L-1
###
Point Distribution
- How close to the atom can an $\alpha$-particle get? - **Almost point distribution**
###
Atomics Models L-1
###
Characterstics
- **1.** Ignore the size of the Atom. - **2.** Estimate $r_{\min }$ - **3.** Compare $r_{\text {min }}$ with $R$ - $\frac{Q_1 Q_2}{4 \pi \epsilon_0 r_{\min }}=5.5 \mathrm{MeV}$ - $ Q_1^\alpha=2 ; \quad Q_2^{A u}=87$ - $ r_{\text {min }}=\frac{Q_1 Q_2}{4 \pi \epsilon_0(5.5 \mathrm{MeV})}$ - $\frac{Q_1 Q_2}{4 \pi \epsilon_0 r_{\min }}=5.5 \mathrm{MeV}$ - $ Q_1^\alpha=2 ; \quad Q_2=87$
###
Atomics Models L-1
###
Characterstics
- **If we plug in the numbers.** - $ r_{min } \sim 10^{-14} m $ - $ R \sim 10^{-10} m.$ - $ \frac{r_{min }}{R} \sim 10^{-4}$ - $ V(r)=\frac{Q_1 Q_2}{4 \pi \epsilon_0 r} \quad \quad r \geqslant R $ - $ \int \rho d^3 r=Q_2$
###
Atomics Models L-1
###
Potential
- Inside the sphere, field rises linearly. Potential is quadratic in $r$.
###
Atomics Models L-1
###
Potential
- $ V=-\int E d r $ - $ V(r)=-\frac{1}{2} k r^2 $ - $ \text { for } r
R$
###
Atomics Models L-1
###
Potential of r
- $V(r)=-\frac{1}{2} k r^2+\left.\left.c\right|_{r=R} \frac{Q_1 Q_2}{4 \pi \epsilon_0} \frac{1}{\gamma}\right|_r$ - $k$ is fixed by equating forces at $r=R$. - $k R=\frac{Q_1 Q_2}{4 \pi \epsilon_0} \frac{1}{R^2}$ - $ k =\frac{Q_1 Q_2}{4 \pi \epsilon_0} \frac{1}{R^3}$ - $ V(r) =-\frac{1}{8} \frac{Q_1 Q_2}{4 \pi \epsilon_0} \frac{r^2}{R^3}+{C}$ - $ if, r < R $ - $ =\frac{Q_1 Q_2}{4 \pi \epsilon_0} \frac{1}{R} \quad \quad \text { if } r > R$
###
Atomics Models L-1
###
Potential of r Outside The Sphere
- $ -\frac{1}{8} \frac{Q_1 Q_2}{4 \pi \epsilon_0} \frac{1}{R}+C$ { Sphere( in side ) } - $ =\frac{Q_1 Q_2}{4 \pi \epsilon_0} \frac{1}{R} $ (out side the sphere) - $ \frac{1}{8}+\frac{1}{4} =\frac{3}{8}$ - $ C =\frac{3}{8} \frac{Q_1 Q_2}{4 \pi \epsilon_0} \frac{1}{R}$
###
Atomics Models L-1
###
Rutherford Scattering
- $ V(r)=\frac{\frac{3}{8} \frac{Q_1 Q_2}{4 \pi \epsilon_0} \frac{1}{R}-\frac{1}{8} \frac{Q_1 Q_2}{4 \pi \epsilon_0} \frac{r^2}{R^3}}{r
R: \frac{Q_1 Q_2}{4 \pi \epsilon_0} \frac{1}{r}$ - $K=\frac{Q_1 Q_2}{4 \pi \epsilon_0} $ - **Essence of rutherford scattering**
###
Atomics Models L-1
###
Rutherford Cross Section
###
Atomics Models L-1
###
Rutherford Experiment
###
Atomics Models L-1
###
Plum Pudding Model
- The positive charge is distributed in a very small region in the atom - $r_p \sim 10^{-4} r_{a t}$ - **Figure: Geiger marsden results**
###
Atomics Models L-1
###
Planetary Model
- $r<10^{-14} \mathrm{~m}$ - Planetary model - $\frac{10^7 10^8 10^{10} \cdot m}{10^{-10}}$
###
Atomics Models L-1
###
Electricity and Magnetism
- **Electromagnetism** - Electrodynamics is much more complicated than newtonian gravity.
###
Atomics Models L-1
###
Synchrotron
###
Atomics Models L-1
###
Thank You