###
Photoelectric Effect Einsteins Explanation L-1
###
Photoelectric Effect Einstein's Explanation
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-11-chapter-01-photoelectric-effect-einsteins-explanation-l-1_5-pi1ijbiqebm-015-0040.8.jpg)
###
Photoelectric Effect Einsteins Explanation L-1
###
Millikan Experiment
###
Photoelectric Effect Einsteins Explanation L-1
###
Important Features
- Intensity - Frequency interplay - Minimum frequency required for photoemission - Proportional to Intensity beyond the minimum frequency - No emission below the minimum frequency - Linear Relation between the frequency and the stopping potential
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-11-chapter-01-photoelectric-effect-einsteins-explanation-l-1_5-pi1ijbiqebm-031-0364.8.jpg)
###
Photoelectric Effect Einsteins Explanation L-1
###
Photoelectric Effect
- Energy required for emission of electrons. - Electrons are bound - $\therefore$ Min. Energy is necessary - $\varepsilon<\varepsilon_{\min } \Longrightarrow$ No emission
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-11-chapter-01-photoelectric-effect-einsteins-explanation-l-1_5-pi1ijbiqebm-036-0423.6.jpg)
###
Photoelectric Effect Einsteins Explanation L-1
###
Experiment
- No emission takes place if $\nu < \nu_{\min}$ - Radiation of frequency $\nu$ is equivalent to a collection of quanta, each of which carries an energy $h \nu$. - $U_{c l} =\frac{\varepsilon_0}{2} \vec{E}_0^2 $ - $U_{P E} =n_{p h}\{h \nu\}$
###
Photoelectric Effect Einsteins Explanation L-1
###
Experiment
- $\vec{E}=\vec{E}_0 \cos (\vec{k} \cdot {...}-\omega t) $ - $\omega=2 \pi \nu$ - $U=\frac{1}{2} \epsilon_0 \vec{E}_0^2$ - We have averaged over a period - $U_{P E}=n_{p h(h \nu)}$
###
Photoelectric Effect Einsteins Explanation L-1
###
Planck Hypothesis
- Possibility to Certainty - The Planck Hypothesis is a reluctant explanation Taken to be of limited validity of limited applicability
###
Photoelectric Effect Einsteins Explanation L-1
###
Classical Fields
###
Photoelectric Effect Einsteins Explanation L-1
###
Capacitor
- Discontinuity $\longrightarrow$ Space & Time
###
Photoelectric Effect Einsteins Explanation L-1
###
Problems and Motivations
- **Paradigm Shift** - Maxwell Equations imply Wave Nature - $\rightarrow$ Energy spread continuously in space - $\rightarrow$ Confirmed by Experiments - Photon means particle nature of light - $\rightarrow$ Energy and momentum are distributed discontinuously in space - Justification - Temporal scales!
###
Photoelectric Effect Einsteins Explanation L-1
###
Wave Nature Seen Over Large Temporal Scales
- This is the fundamental observation of Einstien - The electromagnetic wave is coming that have a frequency of - $\nu = 10^{14} hz$
###
Photoelectric Effect Einsteins Explanation L-1
###
The Einstein Hypothesis
- **Photons are for Real** - **Two simple but radical assumptions** - The incident radiation of frequency $\nu$ can be looked upon as a stream of photon "gas" with each photon carrying an energy $h \nu$ - Electrons in the metal escape to free space by transfer of energy from an individual photon - Energy is strictly conserved in this process - Maximum kinetic energy corresponds to complete absorption of photon
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-11-chapter-01-photoelectric-effect-einsteins-explanation-l-1_5-pi1ijbiqebm-213-1508.4.jpg)
###
Photoelectric Effect Einsteins Explanation L-1
###
The Einstein Hypothesis
- $\Phi = 3 eV$ - $\nu_{\min} = \frac{\Phi}{h}$
###
Photoelectric Effect Einsteins Explanation L-1
###
The Einstein Hypothesis
###
Photoelectric Effect Einsteins Explanation L-1
###
Explanation of the Millikan Results
- **Simple and elegant** - Let the work function of an electron be $\phi_0$ - $\phi_0$ is the minimum energy required to emit an electron by irradiation - Electrons completely absorb a photon for their emission (Einstein) - Each photon carries an energy $h \nu$ (Planck)
###
Photoelectric Effect Einsteins Explanation L-1
###
Reconciliation with Millikan
- $E_i=h \nu$ - $E_f=E_{k i n}^{\max }+\phi_0$ - $h \nu=h \nu_0+E_{k i n}^{\max }$ - The Lenard-Millikan Result - $h\left(\nu-\nu_0\right)=E_{\text {kin }}^{\max } \equiv e \times($ Stopping potential) - $E_i^{photon}=h \nu ; \quad E_i^e=0$ - $E_f^{tot}=E_{kin }^{max}+\Phi_0$ - $h(\nu-\nu_0)=E_{kin }^{min} h \nu_0$
###
Photoelectric Effect Einsteins Explanation L-1
###
Energy of the Photon
- If photon is a particle what is its mass? - $c=3 \times 10^8 \mathrm{~m} / \mathrm{s}$ - New ton: $\varepsilon_\gamma=\frac{1}{2}m c^2$
###
Photoelectric Effect Einsteins Explanation L-1
###
Relativity
- $E=\frac{m_0 c^2 }{\sqrt{1-\nu^2 / c^2}} \neq \frac{1}{2} m_0 \nu^2 $ - $\nu=c \Rightarrow E=\infty $
###
Photoelectric Effect Einsteins Explanation L-1
###
Momentum Density
- **Maxwell** - $U=\frac{\epsilon_0}{2}\left|\vec{E}_0\right|^2 $ - $\Pi=\frac{U}{C}$
###
Photoelectric Effect Einsteins Explanation L-1
###
Relativistic Momentum
- $\varepsilon_\gamma=h \nu \longrightarrow $ photo electric - $p_\gamma=\frac{h \nu}{C}$
###
Photoelectric Effect Einsteins Explanation L-1
###
Relativistic Momentum
- $m_0 \rightarrow 0$ - $C_0 \rightarrow \infty $ - $m_0 = 0 \Rightarrow \varepsilon = p = 0$ - $\varepsilon = \frac{m_0 c^2}{\sqrt{1-v^2 / c^2}}$ - $v = c \Rightarrow \varepsilon = p = \infty $ - $p=\frac{m_0 v}{\sqrt{1-v^2 / c^2}}$
###
Photoelectric Effect Einsteins Explanation L-1
###
Relativistic Momentum
- Maxwell + Planck - Einstein - $\varepsilon \gamma = h \nu $ - $p \gamma = \frac{h\nu}{C}$ - $U = \Pi C$
###
Photoelectric Effect Einsteins Explanation L-1
###
Particles Relativistic
- $\varepsilon = \frac{m_0 c^2}{\sqrt{1-v^2 / c^2}}$ - $m_0 = 0 \Rightarrow \varepsilon = p = 0$ - $p=\frac{m_0 v}{\sqrt{1-v^2 / c^2}}$ - $v = c \Rightarrow \varepsilon = p = \infty $
###
Photoelectric Effect Einsteins Explanation L-1
###
Particles Relativistic
- $\varepsilon = \frac{m_0 c^2}{\sqrt{1-v^2 / c^2}}$ - $p= \frac{m_0 v}{\sqrt{1-v^2 / c^2}}$ - $\varepsilon^2 = \frac{m_0 c^4}{\sqrt{1-v^2 / c^2}}$ - $p^2= \frac{m_0^2 v^2}{1-v^2 / c^2}$ - $\varepsilon^2 = m_0^2 c^4 + p_0^2 c^2$
###
Photoelectric Effect Einsteins Explanation L-1
###
Particles Relativistic
- $\varepsilon^2=p^2 c^2+ {m_0^2 c^4}$ - $m_0^2 c^4 \longrightarrow$ inhomogeneous term $m_0 \neq 0 $ - $m_0=0 $ - $\varepsilon=p c $ - $m_0=0 $
###
Photoelectric Effect Einsteins Explanation L-1
###
Rayleigh scattering
- Scattering of light Rayleigh scattering - $\nu_{i n}=\nu_f$
###
Photoelectric Effect Einsteins Explanation L-1
###
Stokes Law
- $\nu_f < \nu_i \Rightarrow \lambda_f > \lambda_i$
###
Photoelectric Effect Einsteins Explanation L-1
###
Compton - scattering
- **Momentum and energy can be monitered**
###
Photoelectric Effect Einsteins Explanation L-1
###
Raman Scattering
- Only one photon is absorbed in photo electric effect. - Electron can also transfer energy to photon. - Anti-Stokes lines
###
Photoelectric Effect Einsteins Explanation L-1
###
Thank You
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-11-chapter-01-photoelectric-effect-einsteins-explanation-l-1_5-pi1ijbiqebm-526-3595.2.jpg)