- $I(\theta)=I(\beta)=I \cdot \frac{\sin ^2 \beta}{\beta^2}$
- $\beta=\frac{\pi}{\lambda} a \sin \theta$
- Positions of Minima are given by $\sin \beta=0$, except when $\beta=0$
- $\Rightarrow \beta=m \pi, \quad m \neq 0 $
- i e for a $\sin \theta=m \lambda ; \quad m= \pm 1, \pm 2, \ldots$
- Thus, the first intensity minimum will occur at $\theta_1=\sin ^{-1}\left(\frac{\lambda}{\alpha}\right)$
- and at $-\theta_1=-\sin ^{-1}\left(\frac{\lambda}{a}\right)$, on either side of the central maxima, at $\theta=0$.