- Fringe Shift, $\Delta x$ (due to Phase Difference $\Delta \phi$ )
- If $x_n^{\prime}$ is the new position of the $n^{\text {th }}$ order Bright fringe, in the presence of a constant phase difference $\Delta \phi$ between $S_1$ and $S_2$,
- $\frac{x_n^{\prime} d}{D}=n \lambda-C=\frac{x_n d}{D}-c $
- $ \therefore\left(x_n-x_n^{\prime}\right) \frac{d}{D}=C=\left(\frac{\Delta \phi}{2 \pi}\right)^\lambda $
- or Fringe shift (of the $n^n$ fringes) , $\Delta x_n = \frac{\Delta \phi}{2 \pi}) \frac{\lambda D}{d}=\frac{\Delta \phi}{2 \pi} \beta$
- which is independent of $n$.
- Thus, Fringe shift $\Delta x=\left(\frac{\Delta \phi}{2 \pi}\right) \beta$
-depends on $\Delta \phi$