- Separation between adjacent maxima $=x_{n+1}-x_n$ or
- $\beta=(n+1) \frac{D}{d} \lambda-n \frac{D}{d} \lambda=\left(\frac{D}{d}\right)^\lambda$
- Note that $\beta \propto D$ and $\propto \frac{1}{d}$ at a given wavelength.
- Typical: $D=100 \mathrm{~cm}, d=0.3 \mathrm{mm}, \lambda=600 \mathrm{nm}$
- $
\beta=\frac{100 \times 10^{-2} \times 600 \times 10^{-9}}{0.3 \times 10^{-8}} \mathrm{m}=2 \mathrm{mm}
- $
- Similarly, positions of minima are given by -
- $r_2-r_1=\frac{x_m d}{D}= \pm(m+1 / 2) \lambda, \quad m=0,1,2 ;$
- Thus, $\quad x_m=(m+1 / 2)\left(\frac{D}{d}\right)^\lambda$
- $m=0$ gives position of first minima, $m=1$ gives position of second minima