Refraction Througha Prism And Dispersion Ray Optics L-9
Refraction Through a Prism and Dispersion Ray Optics
→ \rightarrow → → \rightarrow → Refraction Through a Prism and Dispersion Ray Optics → \rightarrow → Refraction Through a Prism → \rightarrow → Refraction Through a Prism
Refraction Througha Prism And Dispersion Ray Optics L-9
Refraction Through a Prism
Successive refractions at two planar interfaces at an angle.
∠ A \angle{A} ∠ A - Angle of the prism
i − i - i − Angle of incidence
e − e - e − Angle of emergence
D − D - D − Angle of deviation
N 1 − N_1 - N 1 − Normal to the refracting interface. AB
N 2 − N_2 - N 2 − Normal to the refracting interface. AC
B C − B C - BC − usually, ground surface
→ \rightarrow → Refraction Through a Prism and Dispersion Ray Optics → \rightarrow → Refraction Through a Prism → \rightarrow → Refraction Through a Prism → \rightarrow → Refraction Through a Prism
Refraction Througha Prism And Dispersion Ray Optics L-9
Refraction Through a Prism
Reversing the direction of the ray:
e → i e \rightarrow i e → i
i → e i \rightarrow e i → e
No change in D D D .
if: D = ( i + e ) − A D=(i+e)-A D = ( i + e ) − A
If we reverse the direction of propagation of the ray, i i i and e e e would get interchanged; but D D D remains the same.
⇒ \Rightarrow ⇒ For two different values of i , D i, D i , D will be the same.
∴ \therefore ∴ There must be a point of degeneracy (i.e. i = e ) i=e) i = e )
Refraction Through a Prism and Dispersion Ray Optics → \rightarrow → Refraction Through a Prism → \rightarrow → Refraction Through a Prism → \rightarrow → Refraction Through a Prism → \rightarrow → Refraction Through a Prism
Refraction Througha Prism And Dispersion Ray Optics L-9
Refraction Through a Prism
sin i sin r 1 = n 2 n 1 − I s t interface \frac{\sin i}{\sin r_1}=\frac{n_2}{n_1}-I^{st} \text{interface } s i n r 1 s i n i = n 1 n 2 − I s t interface
sin r 2 sin e = n 1 n 2 − I I n d interface \frac{\sin r_2}{\sin e}=\frac{n_1}{n_2}-II^{nd} \text{interface } s i n e s i n r 2 = n 2 n 1 − I I n d interface
For a given prism, n 2 n_2 n 2 and A A A are known.
∴ \therefore ∴ For each angle i , r 1 i, r_1 i , r 1 and hence r 2 ( = A − r 1 ) r_2\left(=A-r_1\right) r 2 ( = A − r 1 ) , and then ' e e e ' can be determined.
⇒ \Rightarrow ⇒ D=(i+e)-A can be calculated.
As discussed, by the reciprocity of light propagation, i i i and e e e are interchangeable.
⇒ \Rightarrow ⇒ for each D D D , there will be two values of i i i .
Refraction Through a Prism → \rightarrow → Refraction Through a Prism → \rightarrow → Refraction Through a Prism → \rightarrow → Refraction Through a Prism → \rightarrow → Refraction Through a Prism
Refraction Througha Prism And Dispersion Ray Optics L-9
Refraction Through a Prism
D = i + e − A D=i+e-A D = i + e − A
D m = 2 i − A D_m=2 i-A D m = 2 i − A
i = A + D m 2 − ( 1 ) i=\frac{A+D _m}{2}-(1) i = 2 A + D m − ( 1 )
When i = e , \text { When } i=e, When i = e ,
r 1 = r 2 = r ( ray ) r_1=r_2=r(\operatorname{ray}) r 1 = r 2 = r ( ray )
⇒ r = A 2 − ( 2 ) \Rightarrow r=\frac{A}{2} -(2) ⇒ r = 2 A − ( 2 )
Refraction Through a Prism → \rightarrow → Refraction Through a Prism → \rightarrow → Refraction Through a Prism → \rightarrow → Refraction Through a Prism → \rightarrow → Refractive Index of A Prism
Refraction Througha Prism And Dispersion Ray Optics L-9
Refraction Through a Prism
Qualitative-plot of D vs i for a typical prism of
A = 60 ∘ , n = 1.5 A=60^{\circ}, n=1.5 A = 6 0 ∘ , n = 1.5
Using (1) and (2), {\text {Using (1) and (2), }} Using (1) and (2),
sin i sin r = n 2 n 1 = sin ( A + D m 2 ) sin ( A 2 ) − ( 3 ) \frac{\sin i}{\sin r}=\frac{n_ 2}{n_ 1}=\frac{\sin \left(\frac{A+D_m}{2}\right)}{\sin \left(\frac{A}{2}\right)}-(3) s i n r s i n i = n 1 n 2 = s i n ( 2 A ) s i n ( 2 A + D m ) − ( 3 )
Usually, n = n air = 1 n=n_{\text {air }}=1 n = n air = 1
n 2 = n = n_2=n= n 2 = n = refractive index of prism
Refraction Through a Prism → \rightarrow → Refraction Through a Prism → \rightarrow → Refraction Through a Prism → \rightarrow → Refractive Index of A Prism → \rightarrow → Thin Prisms
Refraction Througha Prism And Dispersion Ray Optics L-9
Refractive Index of A Prism
n = sin ( A + D m 2 ) sin ( A 2 ) n=\frac{\sin \left(\frac{A+D_m}{2}\right)}{\sin \left(\frac{A}{2}\right)} n = s i n ( 2 A ) s i n ( 2 A + D m )
A - Angle of the Prism \text { A - Angle of the Prism} A - Angle of the Prism
D m - Angle of minimum D_m \text { - Angle of minimum } D m - Angle of minimum
Deviation \text { Deviation } Deviation
Experiment with a Spectrometer
Refraction Through a Prism → \rightarrow → Refraction Through a Prism → \rightarrow → Refractive Index of A Prism → \rightarrow → Thin Prisms → \rightarrow → Exercise
Refraction Througha Prism And Dispersion Ray Optics L-9
Thin Prisms
A A A is small, thickness of the medium is small
∴ D \therefore D ∴ D is also small
n = sin ( A + D m 2 ) sin ( A / 2 ) n= \frac{\sin(\frac{A+D_m}{2})}{\sin (A / 2)} n = s i n ( A /2 ) s i n ( 2 A + D m )
≈ ( A + D m ) / 2 A / 2 = 1 + D m A \approx \frac{(A+D_m) / 2}{A / 2}=1+\frac{D_m}{A} ≈ A /2 ( A + D m ) /2 = 1 + A D m
or D m = ( n − 1 ) A \text { or } D_m=(n-1) A or D m = ( n − 1 ) A
Refraction Through a Prism → \rightarrow → Refractive Index of A Prism → \rightarrow → Thin Prisms → \rightarrow → Exercise → \rightarrow → Solution
Refraction Througha Prism And Dispersion Ray Optics L-9
Exercise
Consider a glass prism of equilateral triangular cross section and refractive index 1.56:
(i) What should be the angle of incidence (on the refracting surface) for a ray so that − - − angle of incidence = angle of emergence?
(ii) If the prism is immersed in water ( n = 1.33 ) (n=1.33) ( n = 1.33 ) , what would be the angle of minimum deviation?
Refractive Index of A Prism → \rightarrow → Thin Prisms → \rightarrow → Exercise → \rightarrow → Solution → \rightarrow → Solution
Refraction Througha Prism And Dispersion Ray Optics L-9
Solution
n 2 = 1.56 n_2 = 1.56 n 2 = 1.56
A = 60 o A = 60^o A = 6 0 o
i = e → r 1 = r 2 i= e\rightarrow r_1 = r_2 i = e → r 1 = r 2
A 2 = 30 o \frac{A}{2}=30^o 2 A = 3 0 o
(1) sin i sin r 1 = n 2 n 1 = 1.56 1 \frac{\sin i}{\sin r_ 1}= \frac{n_ 2}{n_1} = \frac{1.56}{1} s i n r 1 s i n i = n 1 n 2 = 1 1.56
Thin Prisms → \rightarrow → Exercise → \rightarrow → Solution → \rightarrow → Solution → \rightarrow → Solution
Refraction Througha Prism And Dispersion Ray Optics L-9
Solution
Exercise → \rightarrow → Solution → \rightarrow → Solution → \rightarrow → Solution → \rightarrow → Dispersion
Refraction Througha Prism And Dispersion Ray Optics L-9
Solution
n 2 = 1.56 n_2 = 1.56 n 2 = 1.56
A = 60 o A = 60^o A = 6 0 o
i = e → r 1 = r 2 i= e\rightarrow r_1 = r_2 i = e → r 1 = r 2
A 2 = 30 o \frac{A}{2}=30^o 2 A = 3 0 o
(1) sin i sin r 1 = n 2 n 1 = 1.56 1 \frac{\sin i}{\sin r_ 1}= \frac{n_ 2}{n_1} = \frac{1.56}{1} s i n r 1 s i n i = n 1 n 2 = 1 1.56
Solution → \rightarrow → Solution → \rightarrow → Solution → \rightarrow → Dispersion → \rightarrow → Dispersion
Refraction Througha Prism And Dispersion Ray Optics L-9
Dispersion
The fascination with glass prism
RED
ORANGE
YELLOW
GREEN
BLUE
INDIGO
VIOLET
Solution → \rightarrow → Solution → \rightarrow → Dispersion → \rightarrow → Dispersion → \rightarrow → Dispersion
Refraction Througha Prism And Dispersion Ray Optics L-9
Dispersion
White light spectrum
VIBGYOR
V → ∼ 400 n m V\rightarrow\sim 400 ~nm V →∼ 400 nm
R → ∼ 650 n m R\rightarrow\sim 650 ~nm R →∼ 650 nm
Why does this happen? \text{Why does this happen?} Why does this happen?
Solution → \rightarrow → Dispersion → \rightarrow → Dispersion → \rightarrow → Dispersion → \rightarrow → Refractive Index vs Wavelength
Refraction Througha Prism And Dispersion Ray Optics L-9
Dispersion
Refractive index of a material depends on the wavelength of light
n ≡ n ( λ ) n \equiv n(\lambda) n ≡ n ( λ )
Widely used materials in a glass prism -
Crown glass
Flint glass
Fused quart3 ( S i D 2 ) _3(Si D_2) 3 ( S i D 2 )
Variation of n n n with wavelength ( λ \lambda λ )
Dispersion → \rightarrow → Dispersion → \rightarrow → Dispersion → \rightarrow → Refractive Index vs Wavelength → \rightarrow → Refractive Index vs Wavelength
Refraction Througha Prism And Dispersion Ray Optics L-9
Refractive Index vs Wavelength
Dispersion → \rightarrow → Dispersion → \rightarrow → Refractive Index vs Wavelength → \rightarrow → Refractive Index vs Wavelength → \rightarrow → Cauchy's Formula
Refraction Througha Prism And Dispersion Ray Optics L-9
Refractive Index vs Wavelength
Colour
Wavelength (nm)
Fused Q u a r t 3 Quart_3 Q u a r t 3
Crown Glass
Flint Glass
Violet
396.9
1.470
1.533
1.663
Blue
486.1
1.463
1.523
1.689
Yellow
589.3
1.458
1.517
1.627
Red
656.3
1.456
1.515
1.622
Dispersion → \rightarrow → Refractive Index vs Wavelength → \rightarrow → Refractive Index vs Wavelength → \rightarrow → Cauchy's Formula → \rightarrow → Dispersion Compensation
Refraction Througha Prism And Dispersion Ray Optics L-9
n n n vs.λ \lambda λ
Cauchy's formula: n ( λ ) = A + B λ 2 n(\lambda) = A + \frac{B}{\lambda^2} n ( λ ) = A + λ 2 B
A, B are constants (for given material)
Refractive Index vs Wavelength → \rightarrow → Refractive Index vs Wavelength → \rightarrow → Cauchy's Formula → \rightarrow → Dispersion Compensation → \rightarrow → Formation of Rainbow
Refraction Througha Prism And Dispersion Ray Optics L-9
Dispersion Compensation
Compensating for the dispersion effects due to a particular optical component or medium.
By choosing a second prism of appropriate size and refractive index, it is possible to compensate for the dispersion of the first prism.
Refractive Index vs Wavelength → \rightarrow → Cauchy's Formula → \rightarrow → Dispersion Compensation → \rightarrow → Formation of Rainbow → \rightarrow → Prism
Refraction Througha Prism And Dispersion Ray Optics L-9
Cauchy's Formula → \rightarrow → Dispersion Compensation → \rightarrow → Formation of Rainbow → \rightarrow → Prism → \rightarrow → Thin Lenses
Refraction Througha Prism And Dispersion Ray Optics L-9
Prism
n = sin ( A + D m 2 ) sin ( A 2 ) n=\frac{\sin \left(\frac{A+ D_m}{2}\right)}{\sin \left(\frac{A}{2}\right)} n = s i n ( 2 A ) s i n ( 2 A + D m )
n = n ( λ ) n = n(\lambda) n = n ( λ )
D m = D m ( λ ) D_m = D_m(\lambda) D m = D m ( λ )
n B l u e = D m not blue n_{Blue} = D_m \text{~not blue} n Bl u e = D m not blue
Dispersion Compensation → \rightarrow → Formation of Rainbow → \rightarrow → Prism → \rightarrow → Thin Lenses → \rightarrow → Thank You
Refraction Througha Prism And Dispersion Ray Optics L-9
Thin Lenses
D = ( n − 1 ) A D = (n-1) A D = ( n − 1 ) A
D ( λ ) = ( n ( λ ) − 1 ) A D(\lambda) = (n(\lambda)-1)A D ( λ ) = ( n ( λ ) − 1 ) A
( D B l u e − D R e d ) → (D_{Blue} - D_{Red})\rightarrow ( D Bl u e − D R e d ) → Very small
In the case of mirrors
There is no dispersion Light is reflected.
Formation of Rainbow → \rightarrow → Prism → \rightarrow → Thin Lenses → \rightarrow → Thank You → \rightarrow →
Refraction Througha Prism And Dispersion Ray Optics L-9
Thank You
Prism → \rightarrow → Thin Lenses → \rightarrow → Thank You → \rightarrow → → \rightarrow →
Resume presentation
Refraction Througha Prism And Dispersion Ray Optics L-9 Refraction Through a Prism and Dispersion Ray Optics $\rightarrow$ $\rightarrow$ Refraction Through a Prism and Dispersion Ray Optics $\rightarrow$ Refraction Through a Prism $\rightarrow$ Refraction Through a Prism