###
Maxwells Equations And Electromagnetic Waves L-3
###
Maxwell's Equations and Electromagnetic Waves
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-08-chapter-03-maxwells-equations-and-electromagnetic-waves-l-3_4-f6dhszqewe4-015-0040.8.jpg)
###
Maxwells Equations And Electromagnetic Waves L-3
###
Sinusoidal Waves
- $c = 2.99792458 \times 10^8 m/s $ - $\simeq 3 \times 10^8 m/s$
###
Maxwells Equations And Electromagnetic Waves L-3
###
Sinusoidal Electromagnetic Wave
- $\vec{E} = \hat{i} E_0 \sin (kz - \omega t)$ - $\vec{B} = \hat{j} B_0 \sin(kz-\omega t)$ - $\vec{E} \times \vec{B} \rightarrow \hat{i} \times \hat{j} = \hat{k}$ propagation along z-direction
###
Maxwells Equations And Electromagnetic Waves L-3
###
Free Space
-
No charge
-
No currents
- $\oint \vec{E} \cdot d \vec{A}=0$ - $\oint \vec{B} \cdot d \vec{A}=0$ - $\oint \vec{E} \cdot \vec{dl}=-\frac{d}{d t} \int \vec{B} \cdot d \vec{A}$ - $\oint \vec{B} \cdot \vec{dl}=\mu_0 \epsilon_0 \frac{d}{d t} \int \vec{e} \cdot d \vec{A}$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-08-chapter-03-maxwells-equations-and-electromagnetic-waves-l-3_4-f6dhszqewe4-p21.png)
###
Maxwells Equations And Electromagnetic Waves L-3
###
Faraday's Law
- $ \oint \vec{e} \cdot \vec{dl}=-\frac{d}{d t} \int \vec{B} \cdot d \vec{A}$ - z = z + $\Delta z$ -
$\Delta$ z is infintitational
###
Maxwells Equations And Electromagnetic Waves L-3
###
Faraday's Law
- $ \oint \vec{E} \cdot \vec{dl}$=$\int_P^Q \vec{E} \cdot \vec{dl}$+$\int_Q^R \vec{E} \cdot \vec{dl}$+$\int_R^S \vec{E} \cdot \vec{dl}$+$\int_S^p \vec{E} \cdot \vec{dl}$ - $ \vec{E}=\hat{i} E_0 \sin (k z-\omega t)$ - $ \oint \vec{E} \cdot \vec{dl}$=$\int_P^Q \vec{E} \cdot \vec{dl}$+$\int_R^S \vec{E} \cdot \vec{dl}$ - =$E(z+\Delta z) h-E(z) h $ - =$[E(z+\Delta z)-E(z)] R $ - $ \frac{d f}{d x}$=$\operatorname{lim}_{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} $
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-08-chapter-03-maxwells-equations-and-electromagnetic-waves-l-3_4-f6dhszqewe4-p23.png)
###
Maxwells Equations And Electromagnetic Waves L-3
###
Faraday's Law
- $ \frac{d f}{d x} \simeq \frac{f(x+\Delta x)-f(x)}{\Delta x} $ - $ f(x+\Delta x)=f(x)+\Delta x \cdot \frac{d f}{d x} $ - $ \frac{E(z+\Delta z)-E(z)}{\Delta z}=\frac{d E}{d z}$ - $ E(z+\Delta z)-E(z)=\Delta z \frac{d E}{d z} $ - $ \oint \vec{E} \cdot \vec{dl}$=$\frac{d E}{d z} h \Delta z$=$\frac{d E}{d z} h \Delta z$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-08-chapter-03-maxwells-equations-and-electromagnetic-waves-l-3_4-f6dhszqewe4-p24.png)
###
Maxwells Equations And Electromagnetic Waves L-3
###
Faraday's Law
- $ \int \vec{B} \cdot d \vec{A} \simeq B(z) h \Delta Z $ - $ \frac{d}{d t} \int \vec{B} \cdot d \vec{A}$=$\frac{\partial B}{\partial t} \cdot h \Delta Z $ - $ \oint \vec{E} \cdot \vec{dl}$=$-\frac{d}{d t} \int \vec{B} \cdot d \vec{A} $ - $ \frac{\partial E}{\partial z} h \Delta z$=$-\frac{\partial R}{\partial t} h \Delta z $ - $ \Rightarrow \frac{\partial E}{\partial z}$=$-\frac{\partial B}{\partial t}$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-08-chapter-03-maxwells-equations-and-electromagnetic-waves-l-3_4-f6dhszqewe4-p25.png)
###
Maxwells Equations And Electromagnetic Waves L-3
###
Faraday's Law
- $\frac{\partial E}{\partial z}$=$-\frac{\partial B}{\partial t} $ - $E=E_0 \sin (kz-\omega t) $ - $\frac{\partial E}{\partial z}$=$k E_0 \cos (kz-\omega t) $ - $B=B_0 \sin (kz-\omega t) $ - $\frac{\partial B}{\partial t}$=$-\omega B_0 \cos (kz-\omega t) $ - $k E_0=\omega B_0$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-08-chapter-03-maxwells-equations-and-electromagnetic-waves-l-3_4-f6dhszqewe4-p26.png)
###
Maxwells Equations And Electromagnetic Waves L-3
###
Ampere's Law
- $ \oint \vec{B} \cdot \vec{dl}=\mu_0 \epsilon_0 \frac{d}{d t} \int \vec{E} \cdot d \vec{A}$
###
Maxwells Equations And Electromagnetic Waves L-3
###
Ampere's Law
- $ \oint \vec{B} \cdot \vec{dl}=\int_P^Q \vec{B} \cdot \vec{dl}+\int_Q^R \vec{B} \cdot \vec{dl}+\int_R^S \vec{b} \cdot \vec{dl}+\int_S^P \vec{B} \cdot \vec{dl} $ - =$\int_P^Q \vec{B} \cdot \vec{dl}+\int_R^S \vec{B} \cdot \vec{dl} $ - =$B(z+\Delta z) h-B(z) h $ - =$[B(z+\Delta z)-B(z)] h $ - $ B(z+\Delta z)-B(z) \simeq \Delta z \frac{\partial B}{\partial z} $ - $ \oint \vec{B} \cdot \vec{dl}=\frac{\partial B}{\partial z} h \Delta z$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-08-chapter-03-maxwells-equations-and-electromagnetic-waves-l-3_4-f6dhszqewe4-p28.png)
###
Maxwells Equations And Electromagnetic Waves L-3
###
Ampere's Law
- $ \int \vec{E} \cdot d \vec{A}$=-$E(z) \cdot h \Delta z $ - $ \mu_0 \epsilon_0 \frac{d}{d t} \int \vec{E} \cdot d \vec{A}$=$-\mu_0 \epsilon_0 \frac{\partial E}{\partial t} \cdot h \Delta z$ - $ \oint \vec{B} \cdot d \vec{R}=\mu_0 \epsilon_0 \frac{d}{d t} \int \vec{E} \cdot d \vec{A} $ - $ \frac{\partial B}{\partial z} h \Delta z$=-$\mu_0 \epsilon_0 \frac{\partial \epsilon}{\partial t} h \Delta z$ - $ \frac{\partial B}{\partial z}$=-$\mu_0 \epsilon_0 \frac{\partial E}{\partial t}$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-08-chapter-03-maxwells-equations-and-electromagnetic-waves-l-3_4-f6dhszqewe4-p29.png)
###
Maxwells Equations And Electromagnetic Waves L-3
###
Ampere's Law
- $\frac{\partial B}{\partial z}$=-$\mu_0 \epsilon_0 \frac{\partial E}{\partial t} $ - $B=B_0 \sin (k z-\omega t)$ - $\frac{\partial B}{\partial z}$=$k B_0 \cos (k z-\omega t) $ - $E=E_0 \sin (k z-\omega t) $ - $\frac{\partial E}{\partial t}$=-$\omega E_0 \cos (k z-\omega t) $ - $k B_0=\mu_0 \epsilon_0 \omega E_0$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-08-chapter-03-maxwells-equations-and-electromagnetic-waves-l-3_4-f6dhszqewe4-p30.png)
###
Maxwells Equations And Electromagnetic Waves L-3
###
Ampere's Law
- $ k \epsilon_0=\omega B_0 $ - $ k B_0=\mu_0 \epsilon_0 \omega E_0 $ - $ k^2 E_0 B_0=\mu_0 \epsilon_0 \omega^2 E_0 B_0 $ - $ k^2=\mu_0 \epsilon_0 \omega^2$ -
Speed of the wave
=$\frac{\omega}{b} $ - =$\frac{1}{\sqrt{\epsilon_0 \mu_0}}$ - = c
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-08-chapter-03-maxwells-equations-and-electromagnetic-waves-l-3_4-f6dhszqewe4-p31.png)
###
Maxwells Equations And Electromagnetic Waves L-3
###
Speed of Electromagnetic
* Speed of electromagnetic waves in free space = c - $(\simeq 3 \times 10^8 {m}/{s})$ * Wavelength of the electromagnetic wave = $\lambda$=$\frac{c}{\nu}$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-08-chapter-03-maxwells-equations-and-electromagnetic-waves-l-3_4-f6dhszqewe4-p33.png)
###
Maxwells Equations And Electromagnetic Waves L-3
###
Energy in Electro Magnetic Waves
- $ U_E=\frac{1}{2} \epsilon_0 E^2 $
(Electric energy density)
- $ U_B=\frac{1}{2 \mu_0} B^2 $
(Magnetic energy density)
- $ k E_0=\omega B_0 $ - $ \Rightarrow B_0=\frac{k}{\omega} E_0=\frac{E_0}{c} $
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-08-chapter-03-maxwells-equations-and-electromagnetic-waves-l-3_4-f6dhszqewe4-p34.png)
###
Maxwells Equations And Electromagnetic Waves L-3
###
Energy in Electro Magnetic Waves
- $U_B =\frac{1}{2 \mu_0} B^2 $ - =$\frac{1}{2 \mu_0} B_0^2 \sin ^2(kz-\omega t) $ - =$\frac{1}{2 \mu_0} \frac{E_0^2}{c^2} \sin ^2(kz-\omega t) $ - =$\frac{1}{2 \mu_0} \epsilon_0 \mu_0 E_0^2 \sin ^2(kz-\omega t)$ - =$\frac{1}{2} \epsilon_0 E_0^2 \sin ^2(kz-\omega t) $ - $U_E =\frac{1}{2} \epsilon_0 E^2 $ - =$\frac{1}{2} \epsilon_0 E_0^2 \sin ^2(kz-\omega t)$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-08-chapter-03-maxwells-equations-and-electromagnetic-waves-l-3_4-f6dhszqewe4-p35.png)
###
Maxwells Equations And Electromagnetic Waves L-3
###
Total Energy Density
- U = $U_E + U_B$ - = $\epsilon_0 E_0 \sin^2 (kz-\omega t)$ -
Time average
- U'= $\frac{1}{2} \int_0^T U dt$ - = $ \frac{\epsilon_0 E_0}{T} \int_0^T \sin^2 (kz-\omega t)$ - = $\frac{1}{2} \epsilon_0 E_0 ^2$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-08-chapter-03-maxwells-equations-and-electromagnetic-waves-l-3_4-f6dhszqewe4-p36.png)
###
Maxwells Equations And Electromagnetic Waves L-3
###
Average Energy
* Average energy crossing unit area per unit time = U c - = $\frac {1}{2} c \epsilon_0 E_0 ^2$ = Intensity(I) - I = $\frac{1}{2} c \epsilon_0 E_0 ^2$ - I = $\frac{1}{2} c \epsilon_0 E_0 ^2$ - $E_0 = \sqrt{\frac{2I}{c\epsilon_0}}$
###
Maxwells Equations And Electromagnetic Waves L-3
###
Example-1
- Light from sun - Average intensity on earth $\simeq$ 1000 $W/m^2$ - $E_0 = (\frac{2I}{c\epsilon_0})^1/2$ - $=[\frac{2 \times 10^3}{3 \times 10^8 \times 8.85 \times 10^{-12}}]^{1/2} $ - $\simeq$ 870 V/m
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-08-chapter-03-maxwells-equations-and-electromagnetic-waves-l-3_4-f6dhszqewe4-p41.png)
###
Maxwells Equations And Electromagnetic Waves L-3
###
Example-2
- $B_0 = \frac{E_0}{c} = \frac{870}{3 \times 10^8}$ - $\simeq 3 \times 10^{-6} T$ -
Voyager-1 (September 1977)
- Current distance $\sim 2 \times 10^{13}$ m - Transmitted power $\sim 20W$ - Antenna gain $\sim 6.5 \times 10^4$ - Recieves intensity = $\frac{20 \times 6.5 \times 10^4}{4 \pi \times (2 \times 10^{13})^2}$ - $\simeq 2.6 \times 10^{-22} W/m^2$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-08-chapter-03-maxwells-equations-and-electromagnetic-waves-l-3_4-f6dhszqewe4-p40.png)
###
Maxwells Equations And Electromagnetic Waves L-3
###
Laser
* Power $\sim 10 \{mW} = 10^{-2} \{W} $ * Radius $\simeq 1 \{mm} $ * Intensity = $\frac{Power}{Area}$ = $\frac{10^{-2}}{\pi \times 10^{-6}} $ - =$\frac{10^4}{\pi} \{W} / \{m}^2 $ - $E_0=(\frac{2 I}{C E_0})^{1 / 2} \simeq 1.5 \{kV} / \{m} $ - $B_0=\frac{E_0}{c} \simeq 5 \times 10^{-6} \{T} $
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-08-chapter-03-maxwells-equations-and-electromagnetic-waves-l-3_4-f6dhszqewe4-p42.png)
###
Maxwells Equations And Electromagnetic Waves L-3
###
Thank You
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-08-chapter-03-maxwells-equations-and-electromagnetic-waves-l-3_4-f6dhszqewe4-580-3585.6.jpg)