Lc Oscillations L-9
LC Oscillations
Lc Oscillations L-9
Properties
Lc Oscillations L-9
Properties
- cosϕ= Power factor
- Power Triangle
Lc Oscillations L-9
Power
Multiply by I2
Active power =P=I2R(Walts)
Reactive power =Q=I2X(VAr)
Apparent Power =S=I2Z(VA)
S=VI
P=VIcosϕ
Q=VIsinϕ
Lc Oscillations L-9
Inductive Circuit
X=XL
Lags the voltage
Capacitive voltage
Lc Oscillations L-9
Example
I=0.5A(rms)
Lags the voltage 75o
Apparent Power =220×0.5=110V−A
True Power =110cos(75o)=28.47W
Reactive Power =110sin(75o)=106.25V−Ar
Lc Oscillations L-9
Spring Energy
t=0
v=0
spring energy
U=Umax=21Kx02
K=0
from t = 0 to t=4T,x>0
U=21Kx2
K=21mv2
Lc Oscillations L-9
Spring Energy
-
t=4T
-
U=0
-
K=21mvmax2=Kmax
-
from t=4Tt<11
-
t=2Tx<0
-
K=21mv2
-
U=21kx2
Lc Oscillations L-9
Spring Energy
-
At t=2T
-
Compression is max =x0
-
U=Umax=21Kx02
-
K=0
Lc Oscillations L-9
Spring Energy
From t=2T
t<11
t=43T
x<0 , v=0
K=21mv2
U=21kx2
Lc Oscillations L-9
Spring Energy
At t=43T
K=21mvmax2
U=0
At t=T
U=21Kx02
K=0
Lc Oscillations L-9
Spring Mass
F=−Kx
mdt2d2x=−Kx
x=x0cos(ωt), where
ω=mx
Since at t = 0
x=x0
Spring mass system executes SHM
Lc Oscillations L-9
LC-Oscillation
1 - 2 connected capacitor will be charged at t = 0 Q=Qmax I = 0
Disconnected 1 - 2 but Connect 1 - 3
Currenr flows dtdI>0
I=−dtdQ
−LdtdI+CQ=0
dtd2x+LCQ=0⇔dt2d2x+mkx=0
Lc Oscillations L-9
Magnetic Energy
ω=LC1⇔ωmech=mk
Q↔x
At t=4T
Capacitors are discharged electrical energy has been completely transferred to its magnetic energy associated will inductor
Lc Oscillations L-9
Energy density
Us=21LI2
UE=2CQ2
U=Us+UE=2CQm2=21LIm2
Lc Oscillations L-9
Kinetic energy
-
Kinetic energy of spring mass
-
↔ magnetic energy (L - C)
-
21mv2↔21LI2
-
v↔I, x↔Q, m↔L
-
21kx2↔2CQ2
-
k↔C1
-
Total mechanical energy
-
P.E.+x.E⇔UE+UB= Electromaganetic
Lc Oscillations L-9
Example
L = 50 mH, C = 20 μF
Inactually current is maximum How long does it take to fully charge the capacitor?
ω=LC1=5×10−2×2×10−51
=102rad/s
T=ω2π=6.3ms
T/4≅1.6ms
Lc Oscillations L-9
Example
Radio tuner
800 KHz -1200 KHz
Inductance =200×10−6
=2×10−4H
ω: 800 KHz ⇒ 5.03×106 rad\s
1200 KHz ⇒ 7.54×106 rad\s
ω=LC1⇒c=Lω21
Lc Oscillations L-9
Example
If ω=5.03×106
c=2×10−4×25×10−121
≈200PF
ω=7.54×106
c≈90PF
Lc Oscillations L-9
Example
In an LC circuit C = 64 μF
I(t)=2sin(500t+0.4)Δ
(a) At what time t does the current reach maximum?
I=Im when 500t+0.4=2π
t=2.34×10−3s
Lc Oscillations L-9
Example
Lc Oscillations L-9
Example
LC circuit L = 2mH
c=80μF
Initial charge 4/muC
ω=LC1=2×10−3×80×10−61=2500rad/s
UE=2CQm2=2×8×10−516×10−12
Lc Oscillations L-9
Maximum energy
Im=Qmω
=4×10−6×2500=10−2A
Umagmax=21LIm2=21×2×10−3×10−4
=10−7J
Lc Oscillations L-9
Properties
- Considered LC circuit
- Charge and current oscillation
ω=LC1
- Established a parallel between L-c circuit and a mechanical circuit
Q↔x, I↔v, L↔m, c↔1/x
electrical ↔ spring energy
magnetic ↔ kinetic energy
Lc Oscillations L-9
Thank You
Lc Oscillations L-9 LC Oscillations $\rightarrow$ $\rightarrow$ LC Oscillations $\rightarrow$ Properties $\rightarrow$ Properties