###
Lcr Circuit Power Factor L-8
###
LCR Circuit Power Factor
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-07-chapter-08-lcr-circuit-power-factor-l-8_10-epsspkwqis8-011-0024.0.jpg)
###
Lcr Circuit Power Factor L-8
###
LCR Circuit
- $V(t) = V_m \sin \omega t$ - $ I (t) = I_m \sin (\omega t + \phi)$ - $ I_m= \frac{V_m}{Z} ;$ Z = $\sqrt{R^2+(\Chi_L-\Chi_C)^2}$ - $\phi = \tan^{-1} \frac{\Chi_C - X _L}{R}$ - $\omega = \omega _0 = \frac{1}{\sqrt{LC}} \Rightarrow I_m (\omega)$ reaches a maximum - $\frac{1}{\sqrt{LC}}$ = Resonant Frequency - Sharpness of resonance Bandwidth = $2 \Delta \omega = \frac{R}{L}$ - Quality Factor Q = $\frac{\omega _0 L}{R}$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-07-chapter-08-lcr-circuit-power-factor-l-8_10-epsspkwqis8-033-0201.6.jpg)
###
Lcr Circuit Power Factor L-8
###
Average Power
- Average Power absorbed by circuit - $< P(t)>=\frac{I_m^2 Z}{2} \cos \phi=\frac{V _m^2}{2 Z} \cos \phi$ - $\cos \phi = \frac{R}{Z}$ is **"Power Factor"** of circuit - For a purely resistive circuit Z = R $\cos {\phi = 1} \Rightarrow {\phi = 0}$ : Circuit absorbed maximum power - Maximum Power is also absorbed at resonance $(\Chi_L = \Chi_C)$. - For pure capacitive or inductive circuit $\phi = \frac{\pi}{2} : \cos \phi = 0$ : watt-less circuits
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-07-chapter-08-lcr-circuit-power-factor-l-8_10-epsspkwqis8-057-0523.2.jpg)
###
Lcr Circuit Power Factor L-8
###
Average Power
- For LCR circuit, $\phi \neq 0$. - $< P > = \frac{V_m^2}{2Z} \cos \phi$ - $= \frac{V_m^2}{2Z} \frac{R}{Z}=\frac{V_{rms}^2.R}{Z^2}$ - If purely resistive Load, voltage & current in phase $V I> 0. \Rightarrow$ Power flows to Load. - If not in Phase $ V I $ may become $ < 0 $ for some part of the cycle
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-07-chapter-08-lcr-circuit-power-factor-l-8_10-epsspkwqis8-073-0769.2.jpg)
###
Lcr Circuit Power Factor L-8
###
Capacitive circuit
- 0 to $\frac{T}{4}$ absorbs - $\frac{T}{4}$ to $\frac{T}{2}$ returned - $\frac{T}{2}$ to $\frac{3T}{4}$ absorbs - $\frac{3T}{4}$ to T returns
###
Lcr Circuit Power Factor L-8
###
Capacitive circuit
- $ I(t) = I_m \sin (\omega t + \phi)$ - $ V (t) = V_m \sin (\omega t)$ - Current Leads (...) - Voltage by cp = $\pi/4$ - (time Lead by T/8) - From $\quad t=0$ to $\frac{3 T}{8} \rightarrow V>0 ; I>0$ absorbs power - $t=\frac{3 T}{8}$ to $\frac{T}{2} \quad V>0; I<0 \quad$ Power is returned - $t=\frac{T}{2}$ to $\frac{7 T}{8} \quad V<0 ; I<0$ Power is absorbed - $t=\frac{3 T} {8}$ $to$ $\quad V<0 ; I>0$ Power is returned
###
Lcr Circuit Power Factor L-8
###
Inductive Reactance
- $\Chi_L$ (Inductive Reactance) - $ \Chi_L ^2 + R^2 = Z^2 $ - $\cos \phi = \frac{R}{Z}$ - $\sin \phi = \frac{\Chi_L}{Z}$ - $I^2R$ : Power Consumed by resistive Load (Watts : True Power) - = $ I. V. \frac{R}{Z} = I ~V \cos \phi.$ (True) **Active Power** - $I^2 \Chi_L = I.\frac{V}{Z}. \Chi_L = I ~V \sin \phi$ **(Watt-less or Reactive Power) V Amp** - $ I ~V $ = Apparent Power (V A)
###
Lcr Circuit Power Factor L-8
###
Power Factory
- $ V I \cos \phi$ (Watts) - $ V I \sin \phi $ (V Amp) - Power Factory = $\frac{\text{True Power}}{\text{Apparent Power}}$ - $ = \cos \phi $
###
Lcr Circuit Power Factor L-8
###
Wattless Component
- For a given value of Power current drawn - $ I = \frac{P}{V \cos \phi}$ - If $\cos \phi $ is small $\Rightarrow$ I drawn is Large Power Loss $I^2 R_c \propto \frac{1}{\cos ^2 \phi}$ - Compensation for reducing apparent Power $\rarr$ Neutralize the Wattless Component
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-07-chapter-08-lcr-circuit-power-factor-l-8_10-epsspkwqis8-161-2138.4.jpg)
###
Lcr Circuit Power Factor L-8
###
Wattless Component
- $ I_p =I \cos \phi $ (True) - $ I_q = I \sin \phi $ (Watt-less Power) - $\theta < \phi$ - $\cos \theta > \cos \phi$.
###
Lcr Circuit Power Factor L-8
###
Example
- $250 V - 60Hz$ source supplies 1.5 kw of Power. - r.m.s. current drawn by Load is 10 A - **(a) Power Factor.** - True Power = 1.5KW. - Apponent Power $= 250\times10$ - $= 2.5 KVA $ - Reactive Power = $\sqrt{(2.5)^2 - (1.5)^2}$ - $\text{ = 2 KVA} $ - Power Factor $\cos \phi = \frac{1.5}{2.5} = 0.6$
###
Lcr Circuit Power Factor L-8
###
Example
- **(b) For full compensation** - $ 2\times10^3 = \frac{V^2}{\Chi_C} = \frac{(250)^2}{\Chi_C}$ - $\Chi_C = 31.25 \Omega $ - $ C = \frac{1}{\Chi_C \omega} = \frac{1}{31.25\times(60\times 2\pi)}$ - $ = 84 ~\mu F $ - **(c)** $\Chi_C = \frac{1}{\omega C}$ - $ 33.15 ~\Omega $ - $ I = \frac{250}{33.15} = 7.54 ~A $ - $ I ~V = 250 \times 7.54 = 1.885 ~\text{K V Amp} $
###
Lcr Circuit Power Factor L-8
###
Example
- Reactive Power is reduced by 1.885 K V Amp is it becomes - $2 - 1.885 = 0.115$ K V Amp - $ \text{Apparent Power} = \sqrt{(.115)^2 + (1.5)^2} $ - $=1.5044 ~{kVA} \approx 1.5 ~{kVA}$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-07-chapter-08-lcr-circuit-power-factor-l-8_10-epsspkwqis8-244-3032.4.jpg)
###
Lcr Circuit Power Factor L-8
###
Example
- **230 V, 50 Hz supply given to a Load results in 280 K V Amp. Power factor 0.86, find the value of C to compensate Phase lag.** - $\cos \phi \approx \frac{\sqrt{3}}{2} $ - apparent power - $ V_R = \frac{V_q}{\sin \phi} = \frac{280}{1/2} = 560 $ K V A - **Active Power** - $V_P = V_R .\cos \phi = 484.4 ~\text{K W} $ - We require - $V_R^\prime = 484.4 ~\text{K V A} $
###
Lcr Circuit Power Factor L-8
###
Example
- **For full Compensation:** - $V_{q^\prime} = 280 \times 10^3$ - $= \omega c ~V_{rms}^2 $ - = $ 314.16 c \times (230)^2$ - = $ 1.66 \times{10^7} .c $ - $\omega $ for $f$ = 50 Hz - $= 314.16$ - $ C = \frac{280\times 10^3}{1.66\times 10^7}$ - $ = 16.86 ~\text{m F} $
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-07-chapter-08-lcr-circuit-power-factor-l-8_10-epsspkwqis8-282-3397.2.jpg)
###
Lcr Circuit Power Factor L-8
###
Thank You
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-07-chapter-08-lcr-circuit-power-factor-l-8_10-epsspkwqis8-284-3540.0.jpg)