LdtdI+IR+CQ=Vmsinωt
I=dtdQ
Ldt2d2I+RdtdI+CI=Vmωcosωt
I(t)=Imsin(ωt+φ)
φ Amount of phase by which current leads 1hz voltage.
Im=ZVm:Z=R2+(Xc−XL)
tanφ=RXc−XL
Maximum current Im has a frequency dependence.
Im has a maximum value as a function of ω
Im has a maximum as a function of ω when Xc−XL → ωL=ωC1
ω=ω0=ωc1 (Resonance)
Immax=RVm
Inductive (Lω)
Resistive R
Capacitive (ωc1)
At ω=ω0, the circuit absorbs maximum power.
Im∝Z1
I−m2∝Z1 maximum power
→ Z is minimum
ω=ω0=LC1
Im=2Immax
1hz power absorbed is half the possible maximum Immax
Full width at half max 2Δω
Δω=2LR
Band width : BW = 2Δω=LR
Quality factor:
Q = 2Δωω0=Rω0L
Typical circuit application Q ∼ 10 to 100
LCR circuit R = 5 Ω, C= 20 μ F, L = 200 mH
(i) Resonant frequency
ω0=LC1=2×10−1×2×10−51
= 500 rad/s (f ≈ 80 Hz)
(ii) Value of ω for which half power maximum occurs.
2Immax⇒(ωL−ωc1)2=R2
ωL−ωC1=±R
ω2LC∓RωC−1=0
ω=2LC±RC+R2C2+4LC
ω=512.5rad/s or 487.5rad/s
spread of ±12.5rad/s.
BW =2ΔW=25rad/s
BW=2ΔW=LR=2×10−15=25rad/s
High pass filter (RL)
For D.C supply Vout = 0
ω increases
XL=ωL will increase.
What in ω such that
Vin Vout =21⇒ Vout=5sinωt.
Zin=50∘+.04ω2
Im=Zin10=502+0.04ω210
Zout=102+0.04ω2
Voutm=Im×Zout
=502+0.04ω210×108+0.04ω2
XL2=700=ω2×0.04
ω = 132 rad/s
f=21Hz
Im=R2+L2ω2Vinm
Vout=R2+L2ω2Vinm ×Lω
=Vinm .ωL(1+L2ω2R2)1/2Lω
≈Vinm[1+21.L2ω2R2]
As ω increases. Vout → Vin
ω→ 0 Vout = 0
Vout=R2+L2ω2VinR
= Lω(1+L2ω2R2)1/2VinR
For large ω Vout decreases.
For ω→0, Vout→Vin
Im=ZVinm=1o4+0.04ω210
Vmout=1o4+0.04ω210×103
ω = 500 rad/s : Voutm=9.95V
ω = 5000 rad/s : Voutm=7.07V
ω = 50000 rad/s : Voutm=0.995V
V(t) = Vmsinωt
I(t) = Imsin(ωt+φ)
Im=ZVm : φ=tan−1RXc−XL
P(t) = I(t) V(t)
= VmImsinωt.sin(ωt+φ)
=VmIm[sin2ωtcosφ+sinωt+cosωtsinφ)]
<P(t)>=2VmIm.cosφ=2Im2.cosφ=2ZVm2cosφ.
<P>=2Im2Z.Cosϕ
tanϕ=RXc−XL
cosϕ=RR2+(Xc−XL)2=ZR
<P>=2Im2Z.ZR=2Im2.R=Irms2.R
= R2+(Xc−XL)2Vrms2.R
<P> is maximum at XL=Xc
<P>=RVrms2
For a purely resistive circuit.
cosϕ=ZR⇒1:ϕ=0
ϕ=±2π:cosϕ=0
watt-loss circuits.
L-C-R circuit
tanϕ=RXC−XL→ϕ=0
Power dissiparon through resistances only
Circuit at resonance XL=XC:ϕ=0
Maximum power dissipation (through resistance only)
<P>=R2+(XL−Xc)2Vrms2
<Pmax>=RVrms2 ,
When XL=Xc→ω=ω0
<P>=2RVrms2→(XL−Xc)2=R2
ω=±2LR±21L2R2+4ω02
ω1=2LR+21L2R2+4ω02
ω2=−2LR+21L2R2+4ω02
2Δω=ω1−ω2=LR
Q=2Δωω0=Rω0L