- V(t) = $V_m sin \omega t$
- I(t) = $I_m sin (\omega t + \varphi)$
- $I_m = \frac{V_m}{Z}$ : $\varphi = tan^{-1} \frac{X_c - X_L} {R} $
- P(t) = I(t) V(t)
- = $V_m I_m sin \omega t . sin (\omega t + \varphi)$
- =$V_m I_m [sin^2 \omega t cos \varphi + sin \omega t + cos \omega t sin \varphi)]$
- $\
= \frac {V_m I_m}{2} . cos \varphi = \frac {I_m^2}{2} . cos \varphi = \frac {V_m^2}{2Z} cos \varphi.$