Lcr Circuits Analytical Solution Resonance L-6
Circuits Analytical Solution Resonance
Lcr Circuits Analytical Solution Resonance L-6
Impedance
Z=R2+(XC−XL)2
XC=ωC1;XL=ωL
ωC→ capacitive Reactance
XL→ Inductive Reactance
I(t)=Imsin(ωt+ϕ)
ϕ→ phase by which current leads the voltage
Im=2Vm
Lcr Circuits Analytical Solution Resonance L-6
Capacitive circuit
Lcr Circuits Analytical Solution Resonance L-6
Example
100μF capacitor is series with a 400Ω resistance, connected to a 110V(rms)/60Hz supply.
What is the time lag between current maximum and voltage maximum?
60Hz→ω=2π×60≈377rad/s
Capacitive reactance
ωC1=377×10−41=26.5Ω
Z=402(26.5)2≈48Ω
Ivms=48110=2.29A→Im=2.292=3.24A
Lcr Circuits Analytical Solution Resonance L-6
Example
Angle by which Current Leads voltage
ωϕ=1.55ms
f=1KHZ→ω=6263rad/s
ωC=6263×10−4≈0.63Ω−1
XC=ωC1=1.59Ω
Z=402+(1.59)2=40.03Ω
RXC=401.53=0.039→ϕ=tan−1RXC≈0.039rad
Lcr Circuits Analytical Solution Resonance L-6
Analytical Solution
dldI+IR+Cϕ=Vmsinωt
I=dtdϕ
dt2d2I+RdtdI+C1.I=Vmωcos(ωt)
I=Imsin(ωt+ϕ)
dtdI=Imωcos(ωt+ϕ)
dt2d2I=−Imω2sin(ωt+ϕ)
Imω[(−Lω+ωC1)sin(ωt+ϕ)+Rcos(ωt+ϕ)]
=Vmωcosωt
Lcr Circuits Analytical Solution Resonance L-6
Analytical Solution
Imω[(−Lω+ωC1)sin(ωt+ϕ)+Rcos(ωt+ϕ)]
=Vmωcosωt
R=Acosθ
XC−XL=Asinθ
A2=R2+(XC−XL)2=Z2→A=z
tanθ=RXC−XL
ImZcos(ωt+ϕ−θ)=Vmcos(ωt)
Imz=Vm→Im=zVm
Lcr Circuits Analytical Solution Resonance L-6
Resonance
Im=R2+(XC−XL)2Vm
XC=ωC1;XL=ωL
Z is minimum when ωC1=ΔωL
→ω=ω0=LC1
ω0 = Resonant frequency
At resonance Im=RVm; phase
Lcr Circuits Analytical Solution Resonance L-6
Resonance
Both L and C must be Present
If ω2>ω02
ω2>LC1
I∝Z1
I2Z is maximum at ω=ω0
Lcr Circuits Analytical Solution Resonance L-6
Bandwidth
Increase or decrease frequency (standing walk ω0) till power absorbed is half the maximum(at ω0)
20ω=(ω1−ω2)
Bandwitdh (BW)
P=0.5I3R=(2)2I.R→ At half power point
Lcr Circuits Analytical Solution Resonance L-6
Bandwidth
Let, ω1=ω0+Δω
ω2=ω0−Δω
2Δω= Band width
Sharper resonance → Lower bandwidth
At, ω=ω1→Im
=R2+(ω1L−ω1c21)Vm≡2Immax=R.2Vm
Lcr Circuits Analytical Solution Resonance L-6
Example
R2(ω1L−ω1C1)2=2R2
ω1L−ω1C1=R
(ω0+Δω)L−ω0+Δω)C1=R
ω0L[1+ω0Δω]−ω0C1[1−ω0Δω]=R
L.Δω+ω0C1.ω0Δω=R
(L).2Δω=R
Δω=2LR
Lcr Circuits Analytical Solution Resonance L-6
Quality Factor
- 2Δωω0=Rω0L≡Q
Lcr Circuits Analytical Solution Resonance L-6
Example
-
In a series LCR circuit resonance freq. f0=1KHZ; Q=100
-
If R, L, C are doubled. What would Q be?
-
ω0=LC1
-
ω0 reduces by a tactor of 2 If L and C are doubled
-
Q=Rω0L
-
∴Q=50
Lcr Circuits Analytical Solution Resonance L-6
Example
-
V(t)=(240V)sinωt
-
L=10mH
-
C=1μF
-
R=40Ω
-
(a) Resonance Frequency
-
ω0=LC1=10−3×10−61
-
=10−4rad/s
Lcr Circuits Analytical Solution Resonance L-6
Example
-
(b) What is the amplitude of current at resonance>
-
Immax=RVm=R240=6A.,R=40Ω
-
(c) Q=Rω0L=40104×10−2=2.5
-
(d) Voltage across inductor at resonance
-
VLmax=Immax.ω0L
-
=6×[104×10−2]
Lcr Circuits Analytical Solution Resonance L-6
Example
L=3H
C=27μF
R=7.4Ω
What should we do to reduce FWHM by factor of 2?
ω0=LC1=8×27×10−61=111rad/s
Q=Rω0L=7.4111×3≈45
Lcr Circuits Analytical Solution Resonance L-6
Thank You
Lcr Circuits Analytical Solution Resonance L-6 Circuits Analytical Solution Resonance $\rightarrow$ $\rightarrow$ Circuits Analytical Solution Resonance $\rightarrow$ Impedance $\rightarrow$ Capacitive circuit