- Let, $\omega_1 = \omega_0 + \Delta \omega$
- $\omega_2 = \omega_0 - \Delta \omega$
- $2 \Delta \omega = $ Band width
- Sharper resonance $\rightarrow$ Lower bandwidth
- At, $\omega = \omega_1 \rightarrow I_m $
- $= \frac {V_ m}{\sqrt{R^2 +(\omega_ 1 L - \frac{1}{\omega_ 1 c^2})}} \equiv \frac{I_ m^{max}}{\sqrt{2}}=\frac{V_m}{R.\sqrt{2}}$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-07-chapter-06-lcr-circuits-analytical-solution-resonance-l-6_10-faioem7qvg4-192-2240.4.jpg)