- $\langle P\rangle =I_{r m s}^2 \cdot R $
- $ = 4 \times 80 $
- $ =320 $ watts
- **Example:-** (RC Circuit)
- $R=3 \Omega, C=2.5 \times 10^{-4} \mathrm{F}$
- $\omega=1000 \mathrm{rad} / \mathrm{s}$
- $v_{max }= 5 \mathrm{~V}$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-07-chapter-05-lcr-circuit-graphical-solution-alternating-currents-l-5_10-_eek-fqsfm4-273-3138.0.jpg)
- ======
###
Lcr Circuit Graphical Solution Alternating Currents L-5
###
Average Power Delivered
- $ \Chi_C = \frac{1}{\omega C} = \frac{1}{1000 \times 2.5 \times 10^{-4}} $
- $ V=5 \sin \omega t = 4\Omega \$
- $ I=I_m \sin (\omega t+\varphi) $
- $ Z=\sqrt{R^2 + \Chi_C^2} = 5 \Omega, \quad I_m = 1 A$
- $ v_n^{\max }=3 \mathrm{V}, \mathrm{v}_C^{\max }=\frac{I}{\omega C}=4 \mathrm{V} $