- The average of F (t) over a cycle,
- $\langle F(t) \rangle = \frac{1}{T} \int_{0}^{T} F(t) dt$
- $I (t) = {I_m}. \sin (\omega t)$
- $\langle I(t) \rangle = {I_m}.\frac{1}{T} \int_{0}^{T} \sin \omega t dt$
- = ${I_m} \frac{1}{\omega T} [1 - \cos \omega T]$
- $\omega~T = 2\pi = 0 $
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-07-chapter-03-circuits-with-resistance-and-inductance-l-3_10-tevjdg2zwv8-123-1335.6.jpg)