$ \phi_2 = M_{21} I_1$
Mutual inductances
$M_{21} = M_{12}$
I : represent total charge energy the circuit per unit time.
Work done per unit time.
${dw}{dt} = -E I = - L I \frac{dI}{dt}$
Total work done in increasing the current from 0 to I
W = $L \int_{0}^{I} . IdI$
W = $\frac{1}{2} L I^2$
Energy stores = $\frac{1}{2} L I^2 $
$ =\frac{1}{2} \mu_0 N^2 \pi r^2 l \cdot I^2 $
$ =\frac{1}{2} \mu_0 N^2 I^2 \pi r^2 l$
$ =\frac{1}{2 \mu_0}\left(\mu_0 N I\right)^2\left(\pi r^2 l\right) $
$ =\frac{1}{2 \mu_0} B^{2} \times volume$
Magnetic fields, $B=I T$
Energy density $=\frac{1}{2 \mu_0} B^2$
$ =\frac{1}{2 \times 4\pi \times 10^{-7}} \times 1 $
$ =\frac{1}{8 \pi} \times 10^7 \mathrm{J} / \mathrm{m}^3$
N = 1000 turns/m
I = 1 A
B =$\mu_0 N I $
=$4 \pi \times 10^{-7} \times 10^3 $ =$4 \pi \times 10^{-4} T$
$U_B =\frac{1}{2 \mu_0} B^2 = \frac{1}{2 \mu} \mu_0^2 N^2 I^2 $
$ =\frac{\mu_0 N^2 I^2}{2} = \frac{4 \pi \times 10^{-7} \times 10^6 \times 1}{2} $
$=2 \pi \times 10^{-1} \mathrm{~J} / \mathrm{m}^3$