###
Electromagnetic Induction Electromagnetic Induction L-1
###
Electromagnetic Induction
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-06-chapter-01-electromagnetic-induction-electromagnetic-induction-l-1_4-yh8qvw4xjjs-015-0040.8.jpg)
###
Electromagnetic Induction Electromagnetic Induction L-1
###
Introduction
- Electromagnetic, electrochemistry - Diamagnetics - Excellant experiment
###
Electromagnetic Induction Electromagnetic Induction L-1
###
Solenoid(Electromagnet)
###
Electromagnetic Induction Electromagnetic Induction L-1
###
Properties
- Moving a magnet near a coil generats a current in the coil. - Moving the coil in front of a magnet generats a current in the coil. - The direction of current depends on the movement towards or away. - Placing another coil nearby and changing current through the coil generats a current. - Faraday's law of induction.
###
Electromagnetic Induction Electromagnetic Induction L-1
###
Induced Current
* Changing current in coil A * Induced a current in coil B
###
Electromagnetic Induction Electromagnetic Induction L-1
###
Induced Current
* Magnet * Induced current * Current is induced in the circuit
###
Electromagnetic Induction Electromagnetic Induction L-1
###
Faraday's Law of Induction
* Magnet * Coil
###
Electromagnetic Induction Electromagnetic Induction L-1
###
Magnetic Flux
- $\vec B$ : **Magnetic field** - $\Phi_B = \int_s \vec B . {d \vec A}$ - **S = Surface** - $\oint \vec B . {d \vec A}$ = 0
###
Electromagnetic Induction Electromagnetic Induction L-1
###
Faraday's Law
- Changing magnetic flux induces an electromotive force (EMF) - $(EMF) \varepsilon =-\frac{d \Phi_B}{d t} = -\frac{d}{d t}[\int \vec{B} \cdot d \vec{A}]$ - $\varepsilon =\oint_c \vec{E} \cdot \vec{dl}$ - **$\vec{E}$: Electric Field**
###
Electromagnetic Induction Electromagnetic Induction L-1
###
Lenz's Law
* Electrostatic field $\oint \vec{\varepsilon} .\vec{d l}$ * Electric field E : * EMF ${\varepsilon} =\oint_c \vec{\varepsilon}. \vec{d l}$ - **Lenz's Law** - Whenever a change produce an electric current, the direction of the induced current is so as to produce effects opposing the change.
###
Electromagnetic Induction Electromagnetic Induction L-1
###
Lenz's Law
- $\varepsilon=\oint_c \vec{\varepsilon} \cdot \vec{dl}=-\frac{d}{d t} \int_s \vec{B} \cdot {d \vec A}$ - **C** : Path of integration - **S** : Surface with path C as boundary
###
Electromagnetic Induction Electromagnetic Induction L-1
###
Magnetic Flux
- Magnetic flux ${\Phi}_B=\int \vec{B} \cdot d \vec{A}>0$ - If B increase with time then = $ \frac{d {\Phi}_B}{d t}>0$ - $\Rightarrow \varepsilon=-\frac{d {\Phi}_0}{d t}<0$
###
Electromagnetic Induction Electromagnetic Induction L-1
###
EMF
- $\vec B$ increasing with time - Direction of EMF - $\vec B$ decreasing with time - $\varepsilon \cdot$ ?
###
Electromagnetic Induction Electromagnetic Induction L-1
###
Moving Magnet
- $\Phi_B=\int \vec{B} \cdot d \vec{A}>0$ - Magnet moving towards coil - $\Rightarrow \Phi_B$ increases with time - $\frac{d {\Phi}_B}{d t}>0$ - $\varepsilon = -\frac{d {\Phi}_B}{d t}>0$ - Induced current
###
Electromagnetic Induction Electromagnetic Induction L-1
###
Induced Current
- $\varepsilon$ = ? - Direction of induced current
###
Electromagnetic Induction Electromagnetic Induction L-1
###
Thank You