Diamagnetic Ferromagnetic Material Magnetic Field Of Earth L-1
Diamagnetic Ferromagnetic Material Magnetic Field of Earth
→ \rightarrow → → \rightarrow → Diamagnetic Ferromagnetic Material Magnetic Field of Earth → \rightarrow → Magnetic Materials → \rightarrow → Diamagnetic Materials
Diamagnetic Ferromagnetic Material Magnetic Field Of Earth L-1
Magnetic Materials
Diamagetic materials
Paramagnetic materials
Ferromagnetic materials
→ \rightarrow → Diamagnetic Ferromagnetic Material Magnetic Field of Earth → \rightarrow → Magnetic Materials → \rightarrow → Diamagnetic Materials → \rightarrow → Magnetization
Diamagnetic Ferromagnetic Material Magnetic Field Of Earth L-1
Diamagnetic Materials
No internsic magnetic moment.
Dipole induced by the external magnetic field.
According to lenz's law the induced magnetic moments are dielectric opposite
to the external magnetic field.
Will be pushed from region of high magnetic field to smallar magnetic field in an homogeneous field.
Diamagnetic Ferromagnetic Material Magnetic Field of Earth → \rightarrow → Magnetic Materials → \rightarrow → Diamagnetic Materials → \rightarrow → Magnetization → \rightarrow → Paramagnetic Materials
Diamagnetic Ferromagnetic Material Magnetic Field Of Earth L-1
Magnetization
M → = χ m H → \overrightarrow{M} = \chi_{m}\overrightarrow{H} M = χ m H
B → = μ H → = μ o ( 1 + χ m ) H → \overrightarrow{B} = \mu\overrightarrow{H} = \mu_{o}(1+\chi_{m})\overrightarrow{H} B = μ H = μ o ( 1 + χ m ) H
∣ χ m ∣ ≪ 1 \left|\chi_m\right| \ll 1 ∣ χ m ∣ ≪ 1
χ m < 0 \chi_m < 0 χ m < 0
Magnetic Materials → \rightarrow → Diamagnetic Materials → \rightarrow → Magnetization → \rightarrow → Paramagnetic Materials → \rightarrow → Paramagnetic Materials
Diamagnetic Ferromagnetic Material Magnetic Field Of Earth L-1
Paramagnetic Materials
Atoms have a parmanent magnetic moments.
Atoms with odd number of electrons have a net magnetic moment.
In bulk matter, the individual dipoles are aligned randomly and hence we magnetization is zero.
On applying an external magnetic field, that is a torque on the magnetic moment which leads to partial aligment of the moment.
Diamagnetic Materials → \rightarrow → Magnetization → \rightarrow → Paramagnetic Materials → \rightarrow → Paramagnetic Materials → \rightarrow → Paramagnetic Materials
Diamagnetic Ferromagnetic Material Magnetic Field Of Earth L-1
Paramagnetic Materials
The material gets magnetized.
Direction of magnetization is along the direction of the external field.
Medium gets attracted towards stronger fields in an in homogeneous field.
Magnetization depends on temperature, decreases with increasing T
Pierre Curie (1859-1906)
x m = c μ 0 T x_m = c \frac {\mu_0}{T} x m = c T μ 0 : C: Curie constant
Magnetization → \rightarrow → Paramagnetic Materials → \rightarrow → Paramagnetic Materials → \rightarrow → Paramagnetic Materials → \rightarrow → Ferromagnetic Materials
Diamagnetic Ferromagnetic Material Magnetic Field Of Earth L-1
Paramagnetic Materials
M → = χ m H → \overrightarrow{M} = \chi_{m}\overrightarrow{H} M = χ m H
( x − 1 ∣ ≪ 1 ) \left(x_{-1} \mid \ll 1\right) ( x − 1 ∣≪ 1 )
x m > 0 x_m>0 x m > 0
B ⃗ = μ H ⃗ = μ 0 ( 1 + x m ) H ⃗ {\vec{B}}=\mu {\vec{H}}=\mu_0\left(1+x_m\right) \vec{H} B = μ H = μ 0 ( 1 + x m ) H
μ ⩾ μ 0 \mu \geqslant \mu_0 μ ⩾ μ 0
Paramagnetic Materials → \rightarrow → Paramagnetic Materials → \rightarrow → Paramagnetic Materials → \rightarrow → Ferromagnetic Materials → \rightarrow → Ferromagnetic Materials
Diamagnetic Ferromagnetic Material Magnetic Field Of Earth L-1
Ferromagnetic Materials
Atoms have an interesic magnetic dipole moments, primarly due to electron spin.
Intersection between adjacent dipoles is very strong. (each angle interaction)
Minimum energy when magnetising momemts are parallel to each other.
Paramagnetic Materials → \rightarrow → Paramagnetic Materials → \rightarrow → Ferromagnetic Materials → \rightarrow → Ferromagnetic Materials → \rightarrow → Ferromagnetic Elements
Diamagnetic Ferromagnetic Material Magnetic Field Of Earth L-1
Ferromagnetic Materials
Materials sub divides into regions called Domains, each spontenously magnetized to a high degree
Domain volume ∼ 10 − 18 \sim 10^{-18} ∼ 1 0 − 18 to 10 − 12 m 2 10^{-12} m^2 1 0 − 12 m 2
Large pieces of ferromagnetic material have many domains, smaller pieces can be single domain.
Paramagnetic Materials → \rightarrow → Ferromagnetic Materials → \rightarrow → Ferromagnetic Materials → \rightarrow → Ferromagnetic Elements → \rightarrow → Hysteresis
Diamagnetic Ferromagnetic Material Magnetic Field Of Earth L-1
Ferromagnetic Elements
Only Ferromagnetic elements are Iron, Cobalt, Nickel, Gadolinium (Gd), and Dysprosium (Dy).
Explanation of this behavior requires quantum mechanics.
Curie temperature T c T_c T c
T > T C : Paramagnetic T>T_C \text { : Paramagnetic } T > T C : Paramagnetic
IRON: T C ∼ 1043 K T_C \sim 1043 \mathrm{K} T C ∼ 1043 K
COBALT: T E ∼ 1480 K T_E \sim 1480 \mathrm{K} T E ∼ 1480 K
Ferromagnetic Materials → \rightarrow → Ferromagnetic Materials → \rightarrow → Ferromagnetic Elements → \rightarrow → Hysteresis → \rightarrow → Hysteresis
Diamagnetic Ferromagnetic Material Magnetic Field Of Earth L-1
Hysteresis
Hysteresis loop: ∮ H ⃗ . d l → = I f e n c \oint \vec{H} . \overrightarrow{d l} = I_{f_{enc}} ∮ H . d l = I f e n c
Toroid of radius R of ferromagnetic material
H 2 π R = N t I H 2 \pi R=N_t I H 2 π R = N t I
H = N t 2 π R I H=\frac{N_t}{2 \pi R} I H = 2 π R N t I
Magnetic field magnetizes the piece of ferromagnetic material, it produces its own magnetic field.
B is linearly related to H, they are called linear media.
Ferromagnetic Materials → \rightarrow → Ferromagnetic Elements → \rightarrow → Hysteresis → \rightarrow → Hysteresis → \rightarrow → Hysteresis
Diamagnetic Ferromagnetic Material Magnetic Field Of Earth L-1
Hysteresis
Value of B ⃗ \vec{B} B when H ⃗ \vec{H} H is reduces to zero.
B field and H field are not in phase.
Coercive Field: Value of reverse fields H ⃗ \vec{H} H requires to drive B ⃗ \vec{B} B is zero.
H c \mathrm{H}_{\mathrm{c}} H c
It is a characteristic of ferromagnetic materials.
Ferromagnetic Elements → \rightarrow → Hysteresis → \rightarrow → Hysteresis → \rightarrow → Hysteresis → \rightarrow → Example
Diamagnetic Ferromagnetic Material Magnetic Field Of Earth L-1
Hysteresis
B field lacks the H field.
As H field increases, the B ield increased, it got saturated, then as you start to decrease the H field, the B field decreases.
Hysteresis → \rightarrow → Hysteresis → \rightarrow → Hysteresis → \rightarrow → Example → \rightarrow → Problem
Diamagnetic Ferromagnetic Material Magnetic Field Of Earth L-1
Example
Radius = 5 cm
N t = 100 N_t=100 N t = 100
H = N t I 2 π R H=\frac{N_t I}{2 \pi R} H = 2 π R N t I
I = 0.3 A ; I=0.3 A ; I = 0.3 A ;
H = 100 × 0.3 2 π × 5 × 15 2 ≃ 100 A / m H=\frac{100 \times 0.3}{2 \pi \times 5 \times 15^2} \simeq 100 \mathrm{A} / \mathrm{m} H = 2 π × 5 × 1 5 2 100 × 0.3 ≃ 100 A / m
For axis coil
B = μ 0 H = 4 π × 10 − 7 × 100 = 4 π × 10 5 T B =\mu_0 H=4 \pi \times 10^{-7} \times 100 \ =4 \pi \times 10^5 T B = μ 0 H = 4 π × 1 0 − 7 × 100 = 4 π × 1 0 5 T
Hysteresis → \rightarrow → Hysteresis → \rightarrow → Example → \rightarrow → Problem → \rightarrow → Problem
Diamagnetic Ferromagnetic Material Magnetic Field Of Earth L-1
Problem
H = 100 A / N H =100 \mathrm{A} / \mathrm{N} H = 100 A / N
μ ′ = 10 , 000 \mu^{\prime} =10,000 μ ′ = 10 , 000
B = μ H = μ 0 μ , H = 4 π × 10 − 7 × 10 4 × 100 = 1.2 T B =\mu H=\mu_0 \mu, \mathrm{H} = 4 \pi \times 10^{-7} \times 10^4 \times 100 = 1.2 \mathrm{~T} B = μ H = μ 0 μ , H = 4 π × 1 0 − 7 × 1 0 4 × 100 = 1.2 T
For producing same B with axis coil
H = B μ 0 = 1.2 4 π × 10 − 7 = N 0 I 2 π R H=\frac{B}{\mu_0}=\frac{1.2}{4 \pi \times 10^{-7}}=\frac{N_0 I}{2 \pi R} H = μ 0 B = 4 π × 1 0 − 7 1.2 = 2 π R N 0 I
Hysteresis → \rightarrow → Example → \rightarrow → Problem → \rightarrow → Problem → \rightarrow → Ferromagnetic Material
Diamagnetic Ferromagnetic Material Magnetic Field Of Earth L-1
Problem
I = 2 π R N 2 ⋅ 1.2 4 π × 10 7 = I × 10 3 ⋅ A I =\frac{2 \pi R}{N_2} \cdot \frac{1.2}{4 \pi \times 10^7} = I \times 10^3 \cdot \mathrm{A} I = N 2 2 π R ⋅ 4 π × 1 0 7 1.2 = I × 1 0 3 ⋅ A
Example → \rightarrow → Problem → \rightarrow → Problem → \rightarrow → Ferromagnetic Material → \rightarrow → Earth's Magnetic Field
Diamagnetic Ferromagnetic Material Magnetic Field Of Earth L-1
Ferromagnetic Material
H axis Ferromagnetic material
The soft ferromagnetic materials are used in things like transformers or loudspeakers
Three types of primary types of materials, diamagnetic, paramagnetic, and ferromagnetic.
Ferromagnetic materials are very strong magnetic properties.
Diamagnetic have negative susceptibility.
Paramagnetic have positive susceptibility.
Problem → \rightarrow → Problem → \rightarrow → Ferromagnetic Material → \rightarrow → Earth's Magnetic Field → \rightarrow → Earth's Magnetic field
Diamagnetic Ferromagnetic Material Magnetic Field Of Earth L-1
Earth's Magnetic Field
Our earth is associated with the magnetic field.
The center of the earth is the solid iron core.
Convection current leads to movement of ions and generate currents and these currents lead to the generation of magnetic field.
The current theory called the dynamo effect.
Problem → \rightarrow → Ferromagnetic Material → \rightarrow → Earth's Magnetic Field → \rightarrow → Earth's Magnetic field → \rightarrow → Dip and Declination
Diamagnetic Ferromagnetic Material Magnetic Field Of Earth L-1
Earth's Magnetic field
Earth is spinning around an axis which is inclined to the vertical.
Axis of rotation is inclined to about 23.5 degrees with respect to the perpendicular plane.
The magnetic axis is slightly displaced with respect to the geographic axis by about 11.5 degrees.
Ferromagnetic Material → \rightarrow → Earth's Magnetic Field → \rightarrow → Earth's Magnetic field → \rightarrow → Dip and Declination → \rightarrow → Declination and Incination
Diamagnetic Ferromagnetic Material Magnetic Field Of Earth L-1
Dip and Declination
Earth's Magnetic Field → \rightarrow → Earth's Magnetic field → \rightarrow → Dip and Declination → \rightarrow → Declination and Incination → \rightarrow → Thank You
Diamagnetic Ferromagnetic Material Magnetic Field Of Earth L-1
Declination and Incination
Earth's Magnetic field → \rightarrow → Dip and Declination → \rightarrow → Declination and Incination → \rightarrow → Thank You → \rightarrow →
Diamagnetic Ferromagnetic Material Magnetic Field Of Earth L-1
Thank You
Dip and Declination → \rightarrow → Declination and Incination → \rightarrow → Thank You → \rightarrow → → \rightarrow →
Resume presentation
Diamagnetic Ferromagnetic Material Magnetic Field Of Earth L-1 Diamagnetic Ferromagnetic Material Magnetic Field of Earth $\rightarrow$ $\rightarrow$ Diamagnetic Ferromagnetic Material Magnetic Field of Earth $\rightarrow$ Magnetic Materials $\rightarrow$ Diamagnetic Materials