- $\vec{B}=-\frac{\mu_0 I}{4 \pi}x \int\frac{x \sec^2 \phi d \phi}{x^3 \sec^3 \phi}$
- $=-\frac{\mu_0 I}{4 \pi x} \int_{\phi_1}^{\phi_2}\cos \phi d \phi \hat{k}$
- $=-\frac{\mu_0 I}{4 \pi x}(\sin \phi_2 - \sin \phi_1)\hat{k}$
- $\sin \phi =\frac {y}{(x^2+y^3)^{1/2}}$
- $\sin \phi_1=\frac{y_1}{(x^2+{y_1}^2){1/2}}$
- $\sin \phi_2=\frac{y_2}{(x^2+{y_2}^2){1/2}}$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-04-chapter-04-magnetic-field-fora-straight-conductor-and-amperes-law-l-4_7-pz4qlp7drig-458-2530.8.jpg)