More Applications Of Amperes Law L-3
Magnetostatics
→ \rightarrow → → \rightarrow → Magnetostatics → \rightarrow → Solenoid → \rightarrow → Magnetic Field due to Solenoid
More Applications Of Amperes Law L-3
Solenoid
Infinitely long
Closely around solenoid
→ \rightarrow → Magnetostatics → \rightarrow → Solenoid → \rightarrow → Magnetic Field due to Solenoid → \rightarrow → Magnetic Field on a Loop
More Applications Of Amperes Law L-3
Magnetic Field due to Solenoid
Magnetostatics → \rightarrow → Solenoid → \rightarrow → Magnetic Field due to Solenoid → \rightarrow → Magnetic Field on a Loop → \rightarrow → Magnetic Field on a Loop
More Applications Of Amperes Law L-3
Magnetic Field on a Loop
∮ B ⃗ . d l ⃗ = μ I e n c = 0 \oint \vec{B} . \vec{dl} = \mu I_{enc} = 0 ∮ B . d l = μ I e n c = 0
∫ a b B ⃗ . d l ⃗ + ∫ b c B ⃗ . d l ⃗ + ∫ c d B ⃗ . d l ⃗ \int_a^b \vec{B} . \vec{dl} + \int_b^c \vec{B} . \vec{dl} + \int_c^d \vec{B} . \vec{dl} ∫ a b B . d l + ∫ b c B . d l + ∫ c d B . d l
+ ∫ d a B ⃗ . d l ⃗ = 0 + \int_d^a \vec{B} . \vec{dl}=0 + ∫ d a B . d l = 0
Solenoid → \rightarrow → Magnetic Field due to Solenoid → \rightarrow → Magnetic Field on a Loop → \rightarrow → Magnetic Field on a Loop → \rightarrow → Magnetic Field due to Number N Turns
More Applications Of Amperes Law L-3
Magnetic Field on a Loop
∫ a b B ⃗ . d l ⃗ + ∫ c d B ⃗ . d l ⃗ = 0 \int_a^b \vec{B} . \vec{dl} + \int_c^d \vec{B} . \vec{dl} = 0 ∫ a b B . d l + ∫ c d B . d l = 0
B ( r 1 ) ∫ a b d l + B ( r 2 ) ∫ c d d l = 0 B(r_1) \int_a^b dl + B(r_2) \int_c^d dl = 0 B ( r 1 ) ∫ a b d l + B ( r 2 ) ∫ c d d l = 0
B ( r 1 ) ∫ a b d l = B ( r 2 ) ∫ d c d l = 0 B(r_1) \int_a^b dl = B(r_2) \int_d^c dl = 0 B ( r 1 ) ∫ a b d l = B ( r 2 ) ∫ d c d l = 0
→ B ( r 1 ) = B ( r 2 ) \rightarrow B(r_1) = B(r_2) → B ( r 1 ) = B ( r 2 )
For r 2 → ∞ r_2 \rightarrow \infin r 2 → ∞
B ( r 2 ) → 0 B(r_2) \rightarrow 0 B ( r 2 ) → 0
B = 0 to point outside the solenoid.
Magnetic Field due to Solenoid → \rightarrow → Magnetic Field on a Loop → \rightarrow → Magnetic Field on a Loop → \rightarrow → Magnetic Field due to Number N Turns → \rightarrow → Magnetic Field due to Number N Turns
More Applications Of Amperes Law L-3
Magnetic Field due to Number N Turns
∮ B ⃗ . d l ⃗ = μ a I e n c \oint \vec{B} . \vec{dl} = \mu_a I_{enc} ∮ B . d l = μ a I e n c
Number of turns per unit length : N
Number of turns : Nl
Total current enclosed by the loop
Magnetic Field on a Loop → \rightarrow → Magnetic Field on a Loop → \rightarrow → Magnetic Field due to Number N Turns → \rightarrow → Magnetic Field due to Number N Turns → \rightarrow → Magnetic Field along Axis
More Applications Of Amperes Law L-3
Magnetic Field due to Number N Turns
∮ B ⃗ . d l ⃗ = μ 0 N I l \oint \vec{B} . \vec{dl} = \mu_0 N I l ∮ B . d l = μ 0 N I l
B ∫ a b d l = μ 0 N I l B \int_a^b dl = \mu_0 NIl B ∫ a b d l = μ 0 N I l
B l = μ 0 N I l Bl = \mu_0 NIl Bl = μ 0 N I l
→ B = μ 0 N I \rightarrow B = \mu _0 NI → B = μ 0 N I
B ⃗ = μ 0 N I k ^ \vec{B} = \mu_0 NI \hat{k} B = μ 0 N I k ^
Magnetic Field on a Loop → \rightarrow → Magnetic Field due to Number N Turns → \rightarrow → Magnetic Field due to Number N Turns → \rightarrow → Magnetic Field along Axis → \rightarrow → Magnetic Field along Axis
More Applications Of Amperes Law L-3
Magnetic Field along Axis
Magnetic Field due to Number N Turns → \rightarrow → Magnetic Field due to Number N Turns → \rightarrow → Magnetic Field along Axis → \rightarrow → Magnetic Field along Axis → \rightarrow → Magnetic Field along Axis
More Applications Of Amperes Law L-3
Magnetic Field along Axis
d B ⃗ = μ 0 I N d z 2 a 2 ( a 2 + z 2 ) 3 / 2 k ^ d \vec{B} = \frac{\mu_0 I N d z}{2} \frac{a^2}{(a^2 + z^2)^{3 / 2}} \hat{k} d B = 2 μ 0 I N d z ( a 2 + z 2 ) 3/2 a 2 k ^
B ⃗ = μ 0 N I 2 a 2 ∫ 0 L d z ( a 2 + z 2 ) 3 / 2 k ^ \vec{B} = \frac{\mu_0 N I}{2} a^2 \int_0^L \frac{dz}{(a^2+z^2)^{3 / 2}} \hat{k} B = 2 μ 0 N I a 2 ∫ 0 L ( a 2 + z 2 ) 3/2 d z k ^
Z = a tan θ Z = a \tan \theta Z = a tan θ
d z = a sec 2 θ d θ dz = a \sec ^2 \theta d \theta d z = a sec 2 θ d θ
( a 2 + z 2 ) = a 2 sec 2 θ (a^2 + z^2) = a^2 \sec ^2 \theta ( a 2 + z 2 ) = a 2 sec 2 θ
∫ d z ( a 2 + z 2 ) 3 / 2 = ∫ a sec 2 θ d θ a 3 sec 3 θ \int \frac{d z}{(a^2 + z^2)^{3 / 2}} = \int \frac{a \sec ^2 \theta d \theta}{a^3 \sec ^3 \theta} ∫ ( a 2 + z 2 ) 3/2 d z = ∫ a 3 s e c 3 θ a s e c 2 θ d θ
Magnetic Field due to Number N Turns → \rightarrow → Magnetic Field along Axis → \rightarrow → Magnetic Field along Axis → \rightarrow → Magnetic Field along Axis → \rightarrow → Magnetic Field along Axis
More Applications Of Amperes Law L-3
Magnetic Field along Axis
= 1 a 2 ∫ cos θ d θ = \frac{1}{a^2} \int \cos \theta d \theta = a 2 1 ∫ cos θ d θ
= 1 a 2 sin θ ∣ 0 tan − 1 L / a = \frac{1}{a^2} \sin \theta |_0 ^{\tan ^{-1} {L / a}} = a 2 1 sin θ ∣ 0 t a n − 1 L / a
= 1 a 2 sin [ tan − 1 ( L a ) ] = \frac{1}{a^2} \sin [\tan ^{-1}(\frac{L}{a})] = a 2 1 sin [ tan − 1 ( a L )]
B ⃗ = μ 0 N I 2 a 2 . 1 a 2 sin [ tan − 1 ( L a ) ] a ^ \vec{B} = \frac{\mu_0 N I}{2} a^2 . \frac{1}{a^2} \sin [\tan ^{-1}(\frac{L}{a})] \hat{a} B = 2 μ 0 N I a 2 . a 2 1 sin [ tan − 1 ( a L )] a ^
= μ 0 N I 2 sin [ tan − 1 ( L a ) ] k ^ = \frac{\mu_0 N I}{2} \sin [\tan ^{-1}(\frac{L}{a})] \hat{k} = 2 μ 0 N I sin [ tan − 1 ( a L )] k ^
Magnetic Field along Axis → \rightarrow → Magnetic Field along Axis → \rightarrow → Magnetic Field along Axis → \rightarrow → Magnetic Field along Axis → \rightarrow → Magnetic Field along Axis
More Applications Of Amperes Law L-3
Magnetic Field along Axis
B ⃗ ( z = u ) ≃ μ 0 N I 2 \vec{B}(z=u) \simeq \frac{\mu_0 N I}{2} B ( z = u ) ≃ 2 μ 0 N I
Magnetic Field along Axis → \rightarrow → Magnetic Field along Axis → \rightarrow → Magnetic Field along Axis → \rightarrow → Magnetic Field along Axis → \rightarrow → Example
More Applications Of Amperes Law L-3
Magnetic Field along Axis
Magnetic Field along Axis → \rightarrow → Magnetic Field along Axis → \rightarrow → Magnetic Field along Axis → \rightarrow → Example → \rightarrow → Toroid
More Applications Of Amperes Law L-3
Example
L = 20cm
a = 3cm
Total number of turns = 500
Current = 5A
Number of turns per unit length = 500 20 = 25 c m − 1 \frac{500}{20} = 25cm^{-1} 20 500 = 25 c m − 1
B = μ 0 N I = 4 π × 10 − 7 × 2500 × 5 ≃ 0.016 T ( ≃ C e n t r e ) B = \mu_0 NI = 4 \pi \times 10^{-7} \times 2500 \times 5 \simeq 0.016 T (\simeq Centre) B = μ 0 N I = 4 π × 1 0 − 7 × 2500 × 5 ≃ 0.016 T ( ≃ C e n t re )
Magnetic Field along Axis → \rightarrow → Magnetic Field along Axis → \rightarrow → Example → \rightarrow → Toroid → \rightarrow → Total Number of Turns in the Torroid
More Applications Of Amperes Law L-3
Toroid
Path 1:
∮ B ⃗ . d l ⃗ = 0 \oint \vec{B} . \vec{dl} = 0 ∮ B . d l = 0
B .2 π r 1 = 0 B.2 \pi r_1 = 0 B .2 π r 1 = 0
→ B = 0 \rightarrow B = 0 → B = 0
Path 2:
∮ B ⃗ . d l ⃗ = 0 \oint \vec{B} . \vec{dl} = 0 ∮ B . d l = 0
B .2 π r 2 = 0 B.2 \pi r_2 = 0 B .2 π r 2 = 0
B = 0
Magnetic Field along Axis → \rightarrow → Example → \rightarrow → Toroid → \rightarrow → Total Number of Turns in the Torroid → \rightarrow → Motion of Charged Particles in a Magnetic Fields
More Applications Of Amperes Law L-3
Total Number of Turns in the Torroid
Path 3:
∮ B ⃗ . d l ⃗ = μ 0 I e v c = μ 0 N t I \oint \vec{B} . \vec{dl} = \mu_0 I_{evc} = \mu_0 N_t I ∮ B . d l = μ 0 I e v c = μ 0 N t I
N t N_t N t : Total number of turns in the torroid
B .2 π r = μ 0 N t I B.2 \pi r = \mu_0 N_t I B .2 π r = μ 0 N t I
B = μ 0 N t I 2 π r B = \frac{\mu_0 N_t I}{2 \pi r} B = 2 π r μ 0 N t I
Example → \rightarrow → Toroid → \rightarrow → Total Number of Turns in the Torroid → \rightarrow → Motion of Charged Particles in a Magnetic Fields → \rightarrow → Centripetal Force
More Applications Of Amperes Law L-3
Motion of Charged Particles in a Magnetic Fields
Toroid → \rightarrow → Total Number of Turns in the Torroid → \rightarrow → Motion of Charged Particles in a Magnetic Fields → \rightarrow → Centripetal Force → \rightarrow → Angular Velocity
More Applications Of Amperes Law L-3
Centripetal Force
Particles will executed a circular motion :-
F = ∣ q ∣ v B F = |q| v B F = ∣ q ∣ v B
Centripetal Force = m v 2 R = \frac{mv^2}{R} = R m v 2
m v 2 R = ∣ q ∣ v B \frac{mv^2}{R} = |q| vB R m v 2 = ∣ q ∣ v B
R = m v ∣ q ∣ B R = \frac{mv}{|q|B} R = ∣ q ∣ B m v
Total Number of Turns in the Torroid → \rightarrow → Motion of Charged Particles in a Magnetic Fields → \rightarrow → Centripetal Force → \rightarrow → Angular Velocity → \rightarrow → Thomson's charge to mass ratio Experiment
More Applications Of Amperes Law L-3
Angular Velocity
w = v R = ∣ q ∣ B m w = \frac{v}{R} = \frac{|q|B}{m} w = R v = m ∣ q ∣ B
Number of revolution per unit time
f = w 2 π = ∣ q ∣ B 2 π m f = \frac{w}{2 \pi} = \frac{|q|B}{2 \pi m} f = 2 π w = 2 πm ∣ q ∣ B
CYCLOTRON FREQUENCY
Motion of Charged Particles in a Magnetic Fields → \rightarrow → Centripetal Force → \rightarrow → Angular Velocity → \rightarrow → Thomson's charge to mass ratio Experiment → \rightarrow → Problem
More Applications Of Amperes Law L-3
Thomson's charge to mass ratio Experiment
q E = q v B qE = qvB qE = q v B
v = E B v = \frac{E}{B} v = B E
Centripetal Force → \rightarrow → Angular Velocity → \rightarrow → Thomson's charge to mass ratio Experiment → \rightarrow → Problem → \rightarrow → Thank You
More Applications Of Amperes Law L-3
Problem
Angular Velocity → \rightarrow → Thomson's charge to mass ratio Experiment → \rightarrow → Problem → \rightarrow → Thank You → \rightarrow →
More Applications Of Amperes Law L-3
Thank You
Thomson's charge to mass ratio Experiment → \rightarrow → Problem → \rightarrow → Thank You → \rightarrow → → \rightarrow →
Resume presentation
More Applications Of Amperes Law L-3 Magnetostatics $\rightarrow$ $\rightarrow$ Magnetostatics $\rightarrow$ Solenoid $\rightarrow$ Magnetic Field due to Solenoid