- **Force on 1**
- $\vec{l} = b \hat{i}$
- $\vec{F}_1 = I(\vec{l} \times \vec{B}) = I b \hat{i} \times(B \sin \phi \hat{j} + B \cos \phi \hat{k})$
- $= I b B \sin \phi \hat{k} - I b B \cos \phi \hat{j}$
- **Force on 2**
- $\vec{l} = a \hat{j} = a \hat{j}$
- $\vec{F}_2 = I(\vec{l} \times \vec{b}) = I a \hat{j} \times (B \sin \phi \hat{j} + B \cos \phi \hat{k})$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-04-chapter-01-force-and-torque-due-to-magnetic-field-l-1_7-ustrwp959qu-12.jpg)