- $ \rho_{A L}^0=2.75 \times 10^{-8} \Omega \mathrm{m}$
- $ \alpha_{A L}=.004 /{ }^{\circ} \mathrm{C}$
- $ \rho_c^0=5 \times 10^{-5} \Omega \mathrm{m}$
- $ \alpha_c=-0.0005 / ^0 \mathrm{C}$
- $R_{A L}+R_C= R_{A L}^0\left(1+\alpha_{A L} \cdot \Delta T\right) $
- $ +R_c^0\left(1+\alpha_0 \cdot \Delta T\right)$
- $R_{A L}+R_C \equiv R_{A L}^{\circ}+R^{0}_{C}$
- $R_{A L} \alpha_{A L} \cdot \Delta T=-R_{c}^0 \alpha_c \cdot \Delta T$.
- $\alpha_{AL} \rho_{A L}^0 L^{A L}=-\alpha_c \rho_c^{0} \cdot L^C$
- $L^\mu / L^c \approx 227$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-12-unit-03-chapter-08-equivalent-circuits-l-7_11-vw5crcsfpzs-11.jpg)