J=−nevd
vd=meEτ
Mobility
μ=∣E∣∣vd∣=meτ
τ=10−14 s
e∼10−19
40−45 cm2/v−s.
σ=mne2τ
=neμ
For semiconductors
σ=e[ηeμe+pnμn]
For Si:
μe≈1400 cm2/v−s
μn≈460 cm2/v−s
5. Ohm's Law
V=IR
J=σE
6. ρ(T)=ρ(T0)[1+α(T−T0)] in the linear region.
7. Carbon Resistors.
α=.004/0K
ρ=2ρ0=ρ0(1+αΔT)
ΔT=α1=0.0041=250∘C
Resintance at 0∘C.
R=R0(1+αΔT)
β= temperature coefficent of linear expansion
L=L0(1+βΔT)
V=V0(1+γΔT)
≈L03(1+3βΔT)
A=L02(1+βΔT)(1+3βΔT)≈A0⋅(1+2βΔT)
R=ρAL
ΔR=AL⋅Δρ+AρΔL+ρL(−A2ΔA)
=ALΔρ+AρΔL−ρL⋅A2ΔA
RΔR=ρΔρ+LΔL−AΔA
ρΔρ=ρ0ρ0(1+αΔT)−ρ0≈αΔT
β≈2.5×10−5
α=4.3×10−3
LΔL=2.5×10−5
AΔA=5×10−5
α=.0009
β=1.8×10−4
RΔR=ρΔρ+LΔL
=αΔT+βΔT
ε= work done per unit charge
=dqdW coulomb Joule. = volt
Emf is not a Force
Higher potential
Lower potential
E=LV
J=σE
E=ρJ
I=JA
E=LV=ρJ=ρAI
V=(ρAL)I
Resistance R=ρAL
ΔVab=ΔVac+ΔVcb
=IT+ΔVcb
=0+10
If the circuit is open
Open circuit voltage 10 V
RL8.5=0.5
RL=17Ω
Start at C and go in a direction opposite to current direction.
Vc+IR2=Vb
Vb+IR1=Va
Vc+IR2=Va−IR1
Va−Vc=I(R1+R2)
∴I=R1+R2Va−Vc=R1+R2E
r1=1Ω ,r2=1.5
RL=5.5Ω
VA−ε2+ir2+iRL+εr1+ε1=VA
i[r1+r2+RL]+[ε1−ε2]=0
i[8]=2i=41A
VB=VA−ϵ2+i2
VB−VA=−3.625