-
Electrostatic field satisfy
-
$\oint \vec E \vec{dl} = 0 $
-
$\oint \vec{E} \cdot \vec{dl}=0$
-
$ \oint \vec{E} \cdot \overrightarrow{d l}=\int_A^B \vec{E} \cdot \vec{dl}+\int_B^C \vec{E} \cdot \vec{dl} +\int_C^D \vec{E} \cdot \vec{dl}+\int_D^A \vec{E} \cdot \vec{dl} $
-
$ \int_A^B \vec{E} \cdot \overrightarrow{d l}=\int E_0 x \hat{j} \cdot \hat{\imath} d x = 0 $
-
$ \int_C^D \vec{E} \cdot \vec{dl}=0 $
-
$ \int_{B}^{C} \vec E \cdot \vec{dl} = \int_{0}^{b} E_0 a \hat{j} \cdot \hat{j} d y = \int_{0}^{b} E_0 a d y = E_0 a b $