A Wooden block performs SHM on a frictionless surface with frequency $v_0$. The block contains a charge +q on its surface. If now, a uniform electric field $\vec{E}$ is switched on as shown, then SHM of the block will be (2011)
A. of the same frequency and with shifted mean position.
B. of the same frequency and with the same mean position.
C. of changed frequency and with shifted mean position.
D. of changed frequency with same mean position.
Before $\vec{E}$ is switched on
$\nu_0=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}$
Now $\vec{E}$ is switched on:
Block is in equilibrium at 0
$q E=k x_0 \Rightarrow x_0=\frac{q E}{k}$
$m \frac{d^2 x}{d t^2}=-k(x+x_0)+q E$
$=-kx-kx_0+kx_0=-kx$
$\Rightarrow \frac{d^2 x}{d t^2}+\frac{k}{m} x=0$
$ \omega=\sqrt{\frac{k}{m}} $
$\gamma =\frac{1}{2 \pi} \sqrt{\frac{k}{m}}$
(A) The electirc field at point O is $\frac{q}{4 \pi \epsilon_0 r}$ directed along the negative
(B) The potential energy of the system is Zero.
(C) The magnitude of the force between the energy C and B is $\frac{q^2}{54 \pi \epsilon_0 R^2}$
(D) The potential at point O is $\frac{q^2}{12 \pi \epsilon_0 R^2}$
$q_A =q / 3, q_B=q/3, q_C=\frac{-2 q}{3}$
$\vec{E}_0 =-\frac{2 q / 3}{4 \pi \epsilon_0 R^2} \hat{x}=-\frac{q}{6 \pi \epsilon_0 R^2}\hat{x}$
$U=\frac{1}{4 \pi \epsilon_0}[\frac{q_A q_B}{r_{A B}}+\frac{q_A q_C}{r_{A C}}+\frac{q_B q_C}{r_{B C}}]$
$ r_{A B} = 2 R, r_{A C} =r_{A B} \sin 30^o$
$=\frac{1}{2} r_{A B}=R$
$r_{BC}=\sqrt{3}R$
$U=\frac{1}{4 \pi \epsilon_0}[\frac{q^2}{18R}-\frac{2q^2}{9R}-\frac{2q^2}{9 \sqrt{3} R}]$
$F_{BC}=\frac{1}{4 \pi \epsilon_0}\frac{q_B q_C}{r_{BC}^2} = \frac{q^2}{54 \pi \epsilon_0 R^2}$
$V_0=\frac{1}{4 \pi \epsilon_0}[\frac{q_A}{R}+\frac{q_B}{R}+\frac{q_C}{R}] = 0$
Correct option (C)
Six point charges are kept at the vertices of a regular hexagon of side $L$ and centre $O$, as shown in the figure. Given that $K=\frac{1}{4 x \epsilon_0} \frac{q}{L^2}$, which of the following statement(s) is (are) correct?
A. The electric field at O is 6K along OD.
B. The potential at O is zero.
C. The potential at all points on the line PR is same.
D. The potential at all points on the line ST is same.
The elctric field at o
$E_{OA} = \frac{2q}{4 \pi \epsilon_0 L^2} = 2K$
Due to chargesat A and D is 4K along OD
Due to charges at B and E is 2K along OE
Due to charges at C and F is 2K along OC
Resultant force
$=2k \cos 60^o + 2K \cos 60^o +4K=6K$ along OD
Potential at O
$V_0= \sum \frac{1}{4 \pi \epsilon_0} \frac{qi}{L}=\frac{1}{4 \pi \epsilon_0 L} \sum q_i$=0
(A) (B) (C) correct option
Under the influence of the Coulomb field of charge $+Q$, a charge $-q$ is moving around it in an elliptical orbit. Find out the correct statement(s).(2009)
A. The angular momentum of the charge $-q$ is constant.
B. The linear momentum of the charge $-q$ is constant.
C. The angular velocity of the charge $-q$ is constant.
D. The linear speed of the charge $-q$ is constant.
Torque on charge $-q$ due to coulomb force
$ \vec{F}=\frac{-Q q}{4 \pi \epsilon_0 r^2} \hat{r} $
$ \vec{\tau}=\vec{r} \times \vec{F}=0 $
$ \Rightarrow \frac{d \vec{L}}{d t}=0 \Rightarrow \vec{L} \equiv $ constant
$ \vec{F}=\frac{d \vec{p}}{d t} \neq 0$
$\Rightarrow \vec{P} $ is not constant
$ L =m \omega r^2$
The force on line BC due to surface tension is $\gamma a$
$K=\frac{1}{4 \pi \epsilon_0}$
$ F_1=\frac{q^2}{4 \pi \epsilon_0 a^2}=\frac{K q^2}{a^2}=F_2 $
$ F_3=\frac{q^2}{4 \pi \epsilon_0 2 a^2}=\frac{K q^2}{2 a^2}$
Resultant force at A:
$F=2 \frac{k q^2}{a^2} \cos 45^o +\frac{k q^2}{2 a^2}$
$F=\frac{k-\epsilon^2}{a^2}[\sqrt{2}+\frac{1}{2}]$
$\gamma a = 2F \cos 45^o$
$\gamma a =\sqrt{2} \frac{k q^2}{a^2}[\sqrt{2}+\frac{1}{2}]$
$ \Rightarrow a^3 =\sqrt{2}K(\sqrt{2}+\frac{1}{2})\frac{q^2}{\gamma} = K_0 \frac{q^2}{\gamma}$
$\Rightarrow a = k (\frac{q^2}{\gamma})^{1/3}$
$\Rightarrow a=k(\frac{q^2}{\gamma})^{1 / 3}$
$N=3$
Matrix or Matching Type
Four charges $Q_1,Q_2,Q_3$ and $Q_4$ of same magnitude are fixed along the x axis at x = -2a, -a, a and +2a, respectively. A positive charge q is placed on the positive y axis at a distance b>0. Four options of the sign of these charges are given in Colomn I. The direction of the forces on the charge q is the charge q is given is Column II. Match Column I with Column II.(2014)
Resulting force is along $+\hat{y}$ direction
Resultant force is along $+\hat{x}$ direction
Force magnitude
$ F_1=F_4=\frac{q q^{\prime}}{4 \pi \epsilon_0(b^2+4 a^2)} $
$ F_2=F_3=\frac{q q^{\prime}}{4 \pi \epsilon_0(a^2+b^2)}$
$F_{2,3} > F_{1,4}$
The resultant force will be in $-\hat{y}$ direction.
The resultant force will be $-\hat{x}$ direction.
Integer Type
A particle of mass $10^{-1}$ kg and charge 1.0C, is initially at rest. At time t=0, the particle comes under the influence of an electric field $\vec{E}(t)=E_0 \sin \omega ti $, where $E_0 = 1.0N/C$ and $\omega = 10^3 rad/s$. Consider the effect of only the elctric force on the particle. Then the maximum speed, in m/s, attained by the particle at subsequent times is …. (201.)
$\vec{F}=q \vec{E}$
$ \vec{a}=\frac{\vec{F}}{m}=\frac{q \vec{E}}{m}$
$ \rightarrow \frac{d \vec{v}}{d t}=\frac{q E_0 \sin \omega t}{m} \hat{i}$
$\rightarrow \int_{\vec {V}_0}^{\vec{v}} d \vec{v}=\int_0^t \frac{q E_0}{m} \sin \omega t dt \hat{i} = \frac{q E_0}{m} \hat{i} \int_0^t \sin \omega t d t$
$\Rightarrow \vec{v} - \vec{v}_0=\frac{q E_0}{m} \hat{i} [-\frac{\cos \omega t}{\omega}]|_0^t$
$\Rightarrow \vec{v}=-\frac{q E_0}{m \omega} \hat{i}[\cos \omega t-1]$
$\Rightarrow \vec{v}=\hat{i} \frac{q E_0}{m \omega}(1-\cos \omega t)=\hat{i} \frac{2 q E_0}{m \omega}$
$max^m$ speed $ V_{max} =\frac{2 q E_0}{m \omega}$ $ =2 m/s $
Charges $q$, $2_q$ and $4_q$ are uniformaly distributed in three electric solid sphere 1, 2, ans 3 of radii $i/2$, r and 2r respectively, as shown in the figure. If magnitude of the electric fields ojn point P as a distance r from the centre of sphere 1, 2, and 3 are $E_1$, $E_2$ and $E_3$ respectively them (2014)
A. $E_1>E_2>E_3$
B. $E_3>E_1>E_2$
C. $E_2>E_1>E_3$
D. $E_3>E_2>E_1$
$ E_1 \times 4 \pi r^2=\frac{q}{\epsilon_0} $
Sphere 1 $ \Rightarrow E_1=\frac{q}{4 \pi \epsilon_0 r^2}$
Sphere 2 $ E_2 \times 4 \pi r^2=\frac{2 q}{\epsilon_0}$
$\Rightarrow E_2=2 \frac{2q}{4 \pi \epsilon_0 r^2}=2 E_1$
sphere 3 $q_{enc}=\frac{4q}{4/3 \pi (2r)^3}\times \frac{4}{3}\pi r^3$
$=\frac{q}{2}$
$E_3 \times 4 \pi r^2=\frac{q_{enc}}{\epsilon_0} \rightarrow E_3 =\frac{1}{2} \frac{q}{4 \pi \epsilon_0 r^2}$
$=\frac{1}{2}E_1$
(C) correct option
Consider an electirc field $\vec{E}=E_0\hat{i}$ is a constant. The flux through the shaded region (as shown in the figure) due to the field is (2011)
$(A) 2E_0a^2$
$(B)\sqrt{2}E_0a^2$
$(C)E_0a^2$
$(D)\frac{E_0a^2}{2}$
$\oint=\oint \vec{E}.\vec{ds}=\vec{E}. \oint \vec{ds} = \vec{E}.\vec{S}$
$\vec{S}=(a \hat{j}) \times (a \hat{i} +a \hat{k}) = a^2(-\hat{k}+\hat{i})=a^2(\hat{i}-\hat{k})$
$\oint =E_0 \hat{i}.a^2(\hat{i}-\hat{k})=E_0 a^2$