Cylindrical-Spherical-Capacitors-Series-Parallel-Combination L-1
Cylindrical Spherical Capacitors Series and Parallel Combination
→ \rightarrow → → \rightarrow → Cylindrical Spherical Capacitors Series and Parallel Combination → \rightarrow → Parallel Plate Capacitor → \rightarrow → Cylindrical Capacitor
Cylindrical-Spherical-Capacitors-Series-Parallel-Combination L-1
Parallel Plate Capacitor
Consists of two plates of area A separated by distance d.
Between these two plates there is an electric field.
ϵ 0 \epsilon_0 ϵ 0 is the permittivity of free space.
C = ϵ 0 A d \frac{\epsilon_0 A}{d} d ϵ 0 A
→ \rightarrow → Cylindrical Spherical Capacitors Series and Parallel Combination → \rightarrow → Parallel Plate Capacitor → \rightarrow → Cylindrical Capacitor → \rightarrow → Potential Difference
Cylindrical-Spherical-Capacitors-Series-Parallel-Combination L-1
Cylindrical Capacitor
λ \lambda λ is the charge per unit length.
There is no Gaussian flux, electric flux on the top and bottom surface of the cylinder of the Gaussian surface, there is only flux from the cylindrical surface
2 π r ⋅ l ⋅ E = λ l ϵ 0 2 \pi r \cdot l \cdot E =\frac{\lambda l}{\epsilon_0} 2 π r ⋅ l ⋅ E = ϵ 0 λ l
E ⃗ = λ 2 π ϵ 0 r r ^ \vec{E} =\frac{\lambda}{2 \pi \epsilon_0 r} \hat{r} E = 2 π ϵ 0 r λ r ^
Cylindrical Spherical Capacitors Series and Parallel Combination → \rightarrow → Parallel Plate Capacitor → \rightarrow → Cylindrical Capacitor → \rightarrow → Potential Difference → \rightarrow → Capacitance
Cylindrical-Spherical-Capacitors-Series-Parallel-Combination L-1
Potential Difference
V = V ( a ) − V ( b ) V =V(a)-V(b) V = V ( a ) − V ( b )
= − ∫ b a E ⃗ ⋅ d r ⃗ =-\int_b^a \vec{E} \cdot d \vec{r} = − ∫ b a E ⋅ d r = λ 2 π ϵ 0 ∫ a b d r r =\frac{\lambda}{2 \pi \epsilon_0} \int_a^b \frac{d r}{r} = 2 π ϵ 0 λ ∫ a b r d r
V = λ 2 π ϵ 0 ln ( b a ) V=\frac{\lambda}{2 \pi \epsilon_0} \ln \left(\frac{b}{a}\right) V = 2 π ϵ 0 λ ln ( a b )
Length L : charge Q=λ \lambda λ L
Parallel Plate Capacitor → \rightarrow → Cylindrical Capacitor → \rightarrow → Potential Difference → \rightarrow → Capacitance → \rightarrow → Coaxial Cables
Cylindrical-Spherical-Capacitors-Series-Parallel-Combination L-1
Capacitance
V = Q 2 π ϵ 0 L ln ( b a ) V=\frac{Q}{2 \pi \epsilon_0 L} \ln \left(\frac{b}{a}\right) V = 2 π ϵ 0 L Q ln ( a b )
V = Q C V=\frac{Q}{C} V = C Q
Capacitance C = 2 π ϵ 0 L ln ( b / a ) \frac{2 \pi \epsilon_0 L}{\ln (b / a)} l n ( b / a ) 2 π ϵ 0 L
Capacitance per unit length = C L = 2 π ϵ 0 ln ( b / a ) \frac{C}{L}=\frac{2 \pi \epsilon_0}{\ln (b / a)} L C = l n ( b / a ) 2 π ϵ 0
Cylindrical Capacitor → \rightarrow → Potential Difference → \rightarrow → Capacitance → \rightarrow → Coaxial Cables → \rightarrow → Spherical Capacitor
Cylindrical-Spherical-Capacitors-Series-Parallel-Combination L-1
Coaxial Cables
Example
≃ 80 p F / m = 80 × 10 − 12 F / m \simeq 80 \mathrm{pF} / \mathrm{m}=80 \times 10^{-12} \mathrm{F} / \mathrm{m} ≃ 80 pF / m = 80 × 1 0 − 12 F / m
Coaxial cables C ∼ 70 C \sim 70 C ∼ 70 pf/m
Potential Difference → \rightarrow → Capacitance → \rightarrow → Coaxial Cables → \rightarrow → Spherical Capacitor → \rightarrow → Potential Difference
Cylindrical-Spherical-Capacitors-Series-Parallel-Combination L-1
Spherical Capacitor
The inner sphere is charged positively, assume to be charged positively the outer sphere is assumed to be charged negatively
Radius of inner sphere = r a \ r_a r a
Radius of outer sphere = r b \ r_b r b
Electric Flux = 4 π r 2 4 \pi r^2 4 π r 2 E
Capacitance → \rightarrow → Coaxial Cables → \rightarrow → Spherical Capacitor → \rightarrow → Potential Difference → \rightarrow → Capacitance
Cylindrical-Spherical-Capacitors-Series-Parallel-Combination L-1
Potential Difference
V = − ∫ r b r a E ⃗ ⋅ d r ⃗ V =-\int_{r_b}^{r_a} \vec{E} \cdot d \vec{r} V = − ∫ r b r a E ⋅ d r = ∫ r a r b d 4 π ϵ o r 2 d r =\int_{r_a}^{r_b} \frac{d}{4 \pi \epsilon_o r^2} d r = ∫ r a r b 4 π ϵ o r 2 d d r
= Q 4 π ϵ 0 ( − 1 r ) r a r b =\frac{Q}{4 \pi \epsilon_0}\left(-\frac{1}{r}\right)_{r_a}^{r_b} = 4 π ϵ 0 Q ( − r 1 ) r a r b
= Q 4 π ϵ 0 ( 1 r a − 1 r b ) =\frac{Q}{4 \pi \epsilon_0}\left(\frac{1}{r_a}-\frac{1}{r_b}\right) = 4 π ϵ 0 Q ( r a 1 − r b 1 )
V = Q 4 π ϵ 0 ( r b − r a ) r a r b V =\frac{Q}{4 \pi \epsilon_0} \frac{\left(r_b-r_a\right)}{r_a r_b} V = 4 π ϵ 0 Q r a r b ( r b − r a )
Coaxial Cables → \rightarrow → Spherical Capacitor → \rightarrow → Potential Difference → \rightarrow → Capacitance → \rightarrow → Capacitance
Cylindrical-Spherical-Capacitors-Series-Parallel-Combination L-1
Capacitance
Q is the charge carried by the conductors
C = Q V \frac{Q}{V} V Q = 4 π ϵ 0 ( r a r b ) ( r b − r a ) \frac{4 \pi \epsilon_0\left(r_a r_b\right)}{\left(r_b-r_a\right)} ( r b − r a ) 4 π ϵ 0 ( r a r b )
Both conductors carry the same amount of charge Q
Spherical Capacitor → \rightarrow → Potential Difference → \rightarrow → Capacitance → \rightarrow → Capacitance → \rightarrow → Spherical Capacitor
Cylindrical-Spherical-Capacitors-Series-Parallel-Combination L-1
Capacitance
Capacitance of a single sphere conducting sphere of radius r a.
The other conductor which is supposed to be carrying negative charges as infinite size
Limit r b → ∞ r_b \rightarrow \infty r b → ∞
C = 4 π ϵ o r a 4 \pi \epsilon_o r_a 4 π ϵ o r a
Potential Difference → \rightarrow → Capacitance → \rightarrow → Capacitance → \rightarrow → Spherical Capacitor → \rightarrow → Capacitance of The Earth
Cylindrical-Spherical-Capacitors-Series-Parallel-Combination L-1
Spherical Capacitor
r a r_a r a = 1mm, r b = ∞ r_b = \infty r b = ∞
C= 4 π ϵ 0 r a 4 \pi \epsilon_0 r_a 4 π ϵ 0 r a
= 10 − 3 9 × 10 9 ≃ 0.11 p F = 0.11 × 10 − 12 F \frac{10^{-3}}{9 \times 10^9} \simeq 0.11 \mathrm{pF}=0.11 \times 10^{-12} \mathrm{F} 9 × 1 0 9 1 0 − 3 ≃ 0.11 pF = 0.11 × 1 0 − 12 F
If I put a charge of 1 pC then the voltage generated.
V = Q C = 10 − 12 0.11 × 10 − 12 ≈ 9 V V=\frac{Q}{C}=\frac{10^{-12}}{0.11 \times 10^{-12}} \approx 9 \mathrm{V} V = C Q = 0.11 × 1 0 − 12 1 0 − 12 ≈ 9 V
Capacitance → \rightarrow → Capacitance → \rightarrow → Spherical Capacitor → \rightarrow → Capacitance of The Earth → \rightarrow → Capacitors Connected in Series
Cylindrical-Spherical-Capacitors-Series-Parallel-Combination L-1
Capacitance of The Earth
Assume the earth to be spherical
R = 6371 km
C = 4 π ϵ 0 ⋅ R C = 4 \pi \epsilon_0 \cdot R C = 4 π ϵ 0 ⋅ R = 6.371 × 10 6 9 × 10 9 =\frac{6.371 \times 10^6}{9 \times 10^9} = 9 × 1 0 9 6.371 × 1 0 6
≃ 7.08 × 10 − 4 F \simeq 7.08 \times 10^{-4} \mathrm{F} ≃ 7.08 × 1 0 − 4 F = 708 μ F =708 \mu \mathrm{F} = 708 μ F
Capacitance → \rightarrow → Spherical Capacitor → \rightarrow → Capacitance of The Earth → \rightarrow → Capacitors Connected in Series → \rightarrow → Capacitors Connected in Series
Cylindrical-Spherical-Capacitors-Series-Parallel-Combination L-1
Capacitors Connected in Series
They are not connected to any other part of the circuit. So, the net charge within this must be equal to 0
V = V 1 + V 2 + V 3 V=V_1+V_2+V_3 V = V 1 + V 2 + V 3
Charge supplied = q
V 1 = q C 1 ; V 2 = q 1 C 2 ; V 3 = q C 3 V_1=\frac{q}{C_1} ; \quad V_2=\frac{q_1}{C_2} ; \quad V_3=\frac{q}{C_3} V 1 = C 1 q ; V 2 = C 2 q 1 ; V 3 = C 3 q
Spherical Capacitor → \rightarrow → Capacitance of The Earth → \rightarrow → Capacitors Connected in Series → \rightarrow → Capacitors Connected in Series → \rightarrow → Capacitances in Parallel
Cylindrical-Spherical-Capacitors-Series-Parallel-Combination L-1
Capacitors Connected in Series
V = V 1 + V 2 + V 3 V=V_1+V_2+V_3 V = V 1 + V 2 + V 3 = q C 1 + q C 2 + q C 3 = \frac{q}{C_1} + \frac{q}{C_2} + \frac{q}{C_3} = C 1 q + C 2 q + C 3 q
C = q V C = \frac{q}{V} C = V q
V q = 1 C 1 + 1 C 2 + 1 C 3 \frac{V}{q}=\frac{1}{C_1}+\frac{1}{C_2}+\frac{1}{C_3} q V = C 1 1 + C 2 1 + C 3 1
1 C = 1 C 1 + 1 C 2 + 1 C 3 \frac{1}{C}=\frac{1}{C_1}+\frac{1}{C_2}+\frac{1}{C_3} C 1 = C 1 1 + C 2 1 + C 3 1
n Capacitor connected in series.
1 C = ∑ i = 1 N 1 C i \frac{1}{C} =\sum_{i=1}^{N} \frac{1}{C_i} C 1 = ∑ i = 1 N C i 1 = 1 C 1 + 1 C 2 + ⋯ + 1 C n =\frac{1}{C_1}+\frac{1}{C_2}+\cdots+\frac{1}{C_n} = C 1 1 + C 2 1 + ⋯ + C n 1
Capacitance of The Earth → \rightarrow → Capacitors Connected in Series → \rightarrow → Capacitors Connected in Series → \rightarrow → Capacitances in Parallel → \rightarrow → Capacitances in Parallel
Cylindrical-Spherical-Capacitors-Series-Parallel-Combination L-1
Capacitances in Parallel
Capacitor have a potential difference of V
Charge on C 1 = q 1 C_1 = q_1 C 1 = q 1
Charge on C 2 = q 2 C_2 = q_2 C 2 = q 2
Charge on C 3 = q 3 C_3 = q_3 C 3 = q 3
Capacitors Connected in Series → \rightarrow → Capacitors Connected in Series → \rightarrow → Capacitances in Parallel → \rightarrow → Capacitances in Parallel → \rightarrow → Capacitances in Parallel
Cylindrical-Spherical-Capacitors-Series-Parallel-Combination L-1
Capacitances in Parallel
Total Charge Supplied
q = q 1 + q 2 + q 3 q = q_1 + q_2 + q_3 q = q 1 + q 2 + q 3
q 1 = C 1 V , q 2 = C 2 V , q 3 = q 3 V q_1 = C_1V , q_2 = C_2V , q_3 = q_3V q 1 = C 1 V , q 2 = C 2 V , q 3 = q 3 V
q = ( C 1 + C 2 + C 3 ) V q =(C_1+C_2+C_3)V q = ( C 1 + C 2 + C 3 ) V
C = q V C = \frac{q}{V} C = V q
Capacitors Connected in Series → \rightarrow → Capacitances in Parallel → \rightarrow → Capacitances in Parallel → \rightarrow → Capacitances in Parallel → \rightarrow → Capacitances in Parallel
Cylindrical-Spherical-Capacitors-Series-Parallel-Combination L-1
Capacitances in Parallel
C = C 1 + C 2 + C 3 C = C_1 + C_2 + C_3 C = C 1 + C 2 + C 3
For n capacitor in parallel.
C = ∑ i = 1 n C i C=\sum_{i=1}^n C_i C = ∑ i = 1 n C i
Capacitances in Parallel → \rightarrow → Capacitances in Parallel → \rightarrow → Capacitances in Parallel → \rightarrow → Capacitances in Parallel → \rightarrow → Problem
Cylindrical-Spherical-Capacitors-Series-Parallel-Combination L-1
Capacitances in Parallel
Capacitances in Parallel → \rightarrow → Capacitances in Parallel → \rightarrow → Capacitances in Parallel → \rightarrow → Problem → \rightarrow → Problem
Cylindrical-Spherical-Capacitors-Series-Parallel-Combination L-1
Problem
Example
C 23 = C 2 + C 3 C_\text{23} = C_2 +C_3 C 23 = C 2 + C 3
C ⇒ C \Rightarrow C ⇒
1 C = 1 C 1 + 1 C 2 + C 3 \frac{1}{C}=\frac{1}{C_1}+\frac{1}{C_2+C_3} C 1 = C 1 1 + C 2 + C 3 1
C 1 = 25 μ f , C 2 = 5 μ f , C_1=25 \mu \mathrm{f}, \quad C_2=5 \mu \mathrm{f}, C 1 = 25 μ f , C 2 = 5 μ f ,
C 23 = C 2 + C 3 = 25 μ F C_{23}=C_2+C_3=25 \mu \mathrm{F} C 23 = C 2 + C 3 = 25 μ F
Capacitances in Parallel → \rightarrow → Capacitances in Parallel → \rightarrow → Problem → \rightarrow → Problem → \rightarrow → Problem
Cylindrical-Spherical-Capacitors-Series-Parallel-Combination L-1
Problem
C 23 = C 2 + C 3 C_\text{23} = C_2 +C_3 C 23 = C 2 + C 3
1 C = 1 C 1 + 1 C 23 \frac{1}{C} =\frac{1}{C_1}+\frac{1}{C_{23}} C 1 = C 1 1 + C 23 1 = 1 25 + 1 25 =\frac{1}{25}+\frac{1}{25} = 25 1 + 25 1 = 2 25 =\frac{2}{25} = 25 2
C = 25 2 = 12.5 μ F C =\frac{25}{2}=12.5 \mu \mathrm{F} C = 2 25 = 12.5 μ F
Capacitances in Parallel → \rightarrow → Problem → \rightarrow → Problem → \rightarrow → Problem → \rightarrow → Problem
Cylindrical-Spherical-Capacitors-Series-Parallel-Combination L-1
Problem
V = 10 V V = 10V V = 10 V
q = C V = 12.5 × 10 − 6 × 10 V = 125 μ c q=CV=12.5 \times 10^{-6} \times 10 \mathrm{V}=125 \mu \mathrm{c} q = C V = 12.5 × 1 0 − 6 × 10 V = 125 μ c
V 1 = q C 1 = 125 × 10 − 6 25 × 10 − 6 = 5 V V_1=\frac{q}{C_1}=\frac{125 \times 10^{-6}}{25 \times 10^{-6}}=5 \mathrm{V} V 1 = C 1 q = 25 × 1 0 − 6 125 × 1 0 − 6 = 5 V
q 2 = C 2 V = 5 × 10 − 6 × 5 = 25 μ C q_2=C_2 V=5 \times 10^{-6} \times 5=25 \mu C q 2 = C 2 V = 5 × 1 0 − 6 × 5 = 25 μ C
q 3 = C 3 V = 20 × 10 − 6 × 5 = 100 μ C q_3=C_3 V=20 \times 10^{-6} \times 5=100 \mu C q 3 = C 3 V = 20 × 1 0 − 6 × 5 = 100 μ C
We can use the law for adding capacitors connected in series or in parallel and find the equivalent capacitor.
Problem → \rightarrow → Problem → \rightarrow → Problem → \rightarrow → Problem → \rightarrow → Thankyou
Cylindrical-Spherical-Capacitors-Series-Parallel-Combination L-1
Problem
Consider a parallel plate capacitor as shown:
You have two conducting plates separated by distance d.
A solid metallic slab of thickness d 2 \frac{d}{2} 2 d is inserted between the two plates without touching them. what is on Capacitance before insertion & after insertion.
Problem → \rightarrow → Problem → \rightarrow → Problem → \rightarrow → Thankyou → \rightarrow →
Cylindrical-Spherical-Capacitors-Series-Parallel-Combination L-1
Thank You
Problem → \rightarrow → Problem → \rightarrow → Thankyou → \rightarrow → → \rightarrow →
Resume presentation
Cylindrical-Spherical-Capacitors-Series-Parallel-Combination L-1 Cylindrical Spherical Capacitors Series and Parallel Combination $\rightarrow$ $\rightarrow$ Cylindrical Spherical Capacitors Series and Parallel Combination $\rightarrow$ Parallel Plate Capacitor $\rightarrow$ Cylindrical Capacitor