$\begin{aligned}\Phi=\frac{q_1+q_2}{\epsilon_0}\end{aligned}$
$\Phi=\frac{\sum q_i}{\epsilon_0}$
Flux: $\vec{E} \cdot d \vec{s}$
$\oint \vec{E} \cdot d \vec{A}=\frac{Q_{\text {enc }}}{\epsilon_0}$
$\oint {E} \ d {A}=\frac{Q_{\text {enc }}}{\epsilon_0}$
${E} \oint \ d {A}=\frac{Q_{\text {enc }}}{\epsilon_0}$
E. $4 \pi r^2=\frac{Q_\text { enc }}{\epsilon_0} = \frac{Q}{\epsilon_0}$
$ E=\frac{Q}{4 \pi \epsilon_0 r^2}$
$\vec{E}=\frac{Q}{4 \pi \epsilon_0 r^2} \hat{r}$
$\sigma=\frac{Q}{4 \pi R^2}$
r=R
$\vec{E}=\frac{Q}{4 \pi \epsilon_0 R^2} \hat{r} =\frac{\sigma}{\epsilon_0} \hat{r}$
$=\frac{\sigma}{\epsilon_0} \hat{n}$
$ d E=\frac{\lambda d z}{4 \pi \epsilon_0 s^2} \cos \theta$
$s^2=r^2+z^2$
dE= $\frac{\lambda d z}{4 \pi \epsilon_0\left(r^2+z^2\right)} \frac{r}{\sqrt{r^2+z^2}}$
$ d E=\frac{\lambda dzr}{4 \pi \epsilon_0\left(r^2+z^2\right)^{3 / 2}}$
$E=\frac{\lambda r}{4 \pi \epsilon_0} \int_{-\infty}^{+\infty} \frac{d z}{\left(r^2+z^2\right)^{3 / 2}}$
$z=r \tan \phi$
$d z=r \sec ^2 \phi d \phi$
$r^2+z^2=r^2+r^2 \tan ^2 \phi=r^2 \operatorname{sec}^2 \phi$
$ E =\frac{\lambda r}{4 \pi \epsilon_0} \int_{-\pi / 2}^{+\pi / 2} \frac{r \sec ^2 \phi d \phi}{r^3 \sec ^3 \phi}$
$=\frac{\lambda}{4 \pi \epsilon_0 r} \int_{-\pi / 2}^{\pi / 2} \cos \phi d \phi$
$=\frac{\lambda}{4 \pi \epsilon_0 r} \sin |_{-\pi / 2}^{\pi / 2}$
$E =\frac{\lambda}{2 \pi \epsilon_0 r}$
$E \cdot 2 A=\frac{\sigma A}{\epsilon_0}$
$\vec{E}=\frac{\sigma}{2 \epsilon_0} \hat{n}$