Δp=ASinkxCosωt⇒Δp(x=0)=0
Δp(x=L)=0⇒SinkL=0
k=Lnπ
Δp(x,t)=ASinkxCosωt
Δp(x=L,t)=0SinkL=0
k=Lnπ
λ2π=Lnπ⇒λ⋅(n2L)
νn=λv=n(2Lv)
ν1=2Lv,
ν2=2⋅(μv)⋯
ν=n(2Lv) Harmonic
n=1 First Harmonic
n=2 second Harmonic
(2LV)= fundamental frequency
⇒νn=n(2Lv)
v=rT
v=γρB
ν=n(2Lv) Harmonic
n=1 First Harmonic
n=2 second Harmonic
(2LV)= Fundamental frequency
⇒νn=n(2Lv)
v=rT
v=γρB
y(x)=ASinkCosωt
sin(kL)=0 it is maxismum possible displacement
kL=(2n+1)2π = λ2π⋅L=(2n+1)2π
λ=(2n+1)4L
Δp(x,t)=ASinkxcosωt
kx∣L=kL=(2n+1)2π
λ2πL=(2n+1)2π→λ=(2n+1)4L
νn=λv=4L(2n+1)v=(n+21)(2Lv)v=γρB
B = Bulk modulus
ρ = density
γ=Cp/Cv
n2λ=L
⇒λ=(n2L)
One difference between the string vibration and air column vibration.
END CORRECTION
R = radius of the pipe
EFFECTIVE Length for ended pide = L+1.2R
EFFECTIVE length for a pipe closed at one and = L+0.6R
Superposition of two waves of tHE SAME FREQUENCY
traveling in opposite directions
Standing wave.
SUPERPOSITION OF WAVES THAT HAVE SLIGHTLY DIFFERENT FREQUENCIES
ν1ν2
∣(ν1−ν2)∣≪ν1∼ν2
ν1=500Hz,
ν2=502Hz
BEAT PHENOMENA
y1(x,t)=Asin(k1x−ω1t)
y2(x,t)=Bsin(k2x−ω2t)
We stand at a point x=x0=0
y1(t)=+Asinω1t
y2(t)=Bsinω2t
y(t)=y1(t)+y2(t)=Asinω1t+Bsinω2t
y(t)=Asinω1t+Bsinω2t
Beats can be understand easily if we take A =B
y(t)=A[sinω1t+sinω2t]=2Asin(2ω1+ω2t)cos(2ω1−ω2t)
Ifω1=ω2y(t)≈2Asinωt
ω1=ω2ω2=ω1+ΔωΔω≪ω1
y(t)=2Asinω+t⋅cosω−t
ω+=2ω1+ω2≃ω1,
ω−=∣(ω1−ω2)∣
y(t)=2Asinω+tcosω−t
ω−≪ω+
T+=ω+2π≪T−=ω−2π
y(t)=2Asinω+tc0ω−t
Phenomena of Beats
Δp(x,t)=Psinω+tcosω−t
(2ω1−ω2)
2T− = 21(ω−2π=ω1−ω12π
Beat frequency =(ω1−ω2)
ω1=ω2 Beat frequency = 0
Amplitude : Same for both waves
Asinω1t+Bsinω2t
=2A+Bsinω1t+2A−Bsinω1t+2A+Bsinω2t−2(A−B)sinω2t
=2(A+B)(sinω1t+sinω2t)+2(A−B)(sinω1t−sinω1t)
= 2(A+B)sinω+tcosω−t−2(A−B)C3ω+tsinω−t
Source Vs
frequency observed (heard) is different from the frequency emitted by the source
1 Source moving towards the observe
λ=2vv speed of wave
λ′=λ−vsT
ν1=λ′v=λ−vsTv=2v−2vsv=(v−vsv)ν
ν1=(v−vsv)ν>ν
⋯−⋅−⋅?
ν1=(v+vsv)ν<ν
3. When an observer is moving towards the source.
What is the effective distance that the observer sees (feels) between the two maximum?
Let the first maximum be emitted at time t1 and the second one time t2
t2−t1=T.
Let the observer hear the first maximum at t1′ and t2′
The observer hears the second maximum at t2′
Time period falt by the observe = t2′−t1′
t2′−t1′=v+v0λ
T′=ν′1=(v+v0)λ=ν(v+v0)v
⇒ν′=(vv+v0)ν>ν
ν′=(vv+v0)ν=(vv−v0)ν<ν
2′=(v±vsv±v0)2
+v0 is for observe moving towas the source
+Vs is for source moving away from the observed
ν′=(v−vsv)ν
ν′=(v−vsv)ν×(vv+vs)
2hs′′=(v−vsv+vs)ν
(v−vwall v+vwall )ν
We have conside frequencies of an air column in a pipe - closed at one and or open at both ends
Phenomena of beats
Doppler effect