- $f(x, t)=f_1(x, t)+f_2(x, t)+\ldots$
- Specialize in sinusoidal waves
- **$f(x,t)=$**
- A $ \sin (k x-\omega t)\rightarrow$, A $\sin (\omega t-k x)\rightarrow$
- A $G_s(k x-\omega t)\rightarrow$, A $\sin (k x+\omega t)\leftarrow$
- $k=\frac{\omega}{v}, \quad k=\frac{2 \pi}{\lambda}, \quad v=2 \lambda $
- $f(x, t)= A_1 \sin (k_1 x-\omega_1 t) $
- $+A_2 \sin (k_2 x-\omega_2 t)$, $ +A_3 \sin (k_2 x+\omega_3 t)$, and $ +B_1 \cos (k_4 x+\omega_4 t)$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-15-chapter-03-reflection-of-waves-standing-waves-ona-string-l-3_5-xg_9uhw34h4-04.jpg)