- $y(x, t)$ is a function of either $(x-u t) or(x+vt)$
- $f(x, t)=f(x+v t, t=0)$
- A disturbance created as $f(x)$ at time $t=0$ will be changing / will be give a a function of time as
- $f(x, t)=f(x-v t, t=0)$
- $y$ it travels $t$ the right $f(x, t)$
- $=f(x+v t, t=0)$ if it travels $t$ the left.