Amplitude Procedure To Generate Amplitude Modulated Wave L-1
Amplitude and Phase Frequency Modulation, Procedure to Generate Amplitude Modulated Waves
→ \rightarrow →
→ \rightarrow → Amplitude and Phase Frequency Modulation, Procedure to Generate Amplitude Modulated Waves → \rightarrow → Equation of Amplitude Modulated Wave → \rightarrow → Amplitude Modulation Index
Amplitude Procedure To Generate Amplitude Modulated Wave L-1
Equation of Amplitude Modulated Wave
Information Signal (message) → E m = E m o sin ( ω m t ) \rightarrow E_m = E_{mo} \sin(\omega_m t) → E m = E m o sin ( ω m t )
where:
E m o E_{mo} E m o : Amplitude of message
ω m \omega_m ω m : angular frequency of message
Carrier wave → E c = E c o sin ( ω c t ) \rightarrow E_c = E_{co} \sin ({\omega_c t}) → E c = E co sin ( ω c t )
Amplitude modulated → E a m = ( E c o + E m ) sin ( ω c t ) \rightarrow E_{am} = (E_{co} + E_m ) \sin ({\omega_c t)} → E am = ( E co + E m ) sin ( ω c t )
→ \rightarrow → Amplitude and Phase Frequency Modulation, Procedure to Generate Amplitude Modulated Waves → \rightarrow → Equation of Amplitude Modulated Wave → \rightarrow → Amplitude Modulation Index → \rightarrow → Amplitude Modulation Index
Amplitude Procedure To Generate Amplitude Modulated Wave L-1
Amplitude Modulation Index
Amplitude modulated wave has 3 frequencies
ω c \omega_c ω c - ω m \omega_m ω m : Lower side band
ω c \omega_c ω c : carrier frequency
ω c \omega_c ω c + ω m \omega_m ω m : upper side band
Amplitude modulation index (μ \mu μ ) = A m A c \frac {A_m}{A_c} A c A m = E m o E c o \frac{E_{mo}}{E_{co}} E co E m o = Amplitude of modulately wave (message) Amplitude of Carrier wave \frac {\text {Amplitude of modulately wave (message)}}{\text{Amplitude of Carrier wave}} Amplitude of Carrier wave Amplitude of modulately wave (message)
Amplitude and Phase Frequency Modulation, Procedure to Generate Amplitude Modulated Waves → \rightarrow → Equation of Amplitude Modulated Wave → \rightarrow → Amplitude Modulation Index → \rightarrow → Amplitude Modulation Index → \rightarrow → Amplitude Modulation Index
Amplitude Procedure To Generate Amplitude Modulated Wave L-1
Amplitude Modulation Index
μ \mu μ = E m o E c o \frac{E_{mo}}{E_{co}} E co E m o = 2 E m o 2 E c o \frac{2 E_{mo}}{2 E_{co}} 2 E co 2 E m o = 2 E m o + E c o − E c o 2 E c o + E m o − E m o \frac {2 E_{mo} + E_{co} - E_{co}}{2 E_{co} + E_{mo} - E_{mo}} 2 E co + E m o − E m o 2 E m o + E co − E co
= ( E c o + E m o ) − ( E c o − E m o ) ( E c o + E m o ) + ( E c o − E m o ) \frac {(E_{co} + E_{mo}) - (E_{co} - E_{mo})}{ (E_{co} + E_{mo}) + (E_{co} - E_{mo})} ( E co + E m o ) + ( E co − E m o ) ( E co + E m o ) − ( E co − E m o )
μ \mu μ = ( E a m ) m a x − ( E a m ) m i n ( E a m ) m a x + ( E a m ) m i n \frac{(E_{a m})^{max} - (E_{a m})^{min }} {(E_{a m})^{max } + (E_{a m})^{min }} ( E am ) ma x + ( E am ) min ( E am ) ma x − ( E am ) min
E a m = [ E c 0 + E m o sin ( ω m t ) ] sin ( ω c t ) E_{a_m}=[E_{c_0}+E_{mo} \sin (\omega_{m} t)] \sin (\omega_c t) E a m = [ E c 0 + E m o sin ( ω m t )] sin ( ω c t )
Maximum of amplitude modulated Electric field = E c 0 + E m 0 E_{c_0}+E_{m 0} E c 0 + E m 0
Minimum of amplitude modulated field =E c 0 − E m o E_{c_0}-E_{mo} E c 0 − E m o .
Equation of Amplitude Modulated Wave → \rightarrow → Amplitude Modulation Index → \rightarrow → Amplitude Modulation Index → \rightarrow → Amplitude Modulation Index → \rightarrow → Amplitude Modulated Wave
Amplitude Procedure To Generate Amplitude Modulated Wave L-1
Amplitude Modulation Index
The envelope of amplitude modulated wave represents the original modulating wave.
μ = 1 \mu = 1 μ = 1 , efficient amplitude modulated transfer.
Generation of Amplitude modulated wave
After adder: x(t) = m(t) + m c ( t ) m_c (t) m c ( t )
After square law device: y(t) = B x (t) + C x 2 ( t ) x^2 (t) x 2 ( t )
E m o d E_{mod} E m o d = m(t) = E m o sin ( ω m t ) E_{mo} \sin(\omega_m t) E m o sin ( ω m t )
E c ( t ) E_c (t) E c ( t ) = m c ( t ) m_c (t) m c ( t ) = E c o sin ( ω c t ) E_{co} \sin (\omega_c t) E co sin ( ω c t )
Amplitude Modulation Index → \rightarrow → Amplitude Modulation Index → \rightarrow → Amplitude Modulation Index → \rightarrow → Amplitude Modulated Wave → \rightarrow → Amplitude Modulated Wave
Amplitude Procedure To Generate Amplitude Modulated Wave L-1
Amplitude Modulated Wave
After adder:
x ( t ) = E m o sin ( ω m t ) + E c o sin ( ω c t ) x(t)=E_{mo} \sin (\omega_m t)+ E_{co} \sin (\omega_c t) x ( t ) = E m o sin ( ω m t ) + E co sin ( ω c t )
After square law device:
y ( t ) = B x ( t ) + C x 2 ( t ) y(t)= B x(t)+ C x^2 (t) y ( t ) = B x ( t ) + C x 2 ( t )
= B [ E m o sin ( ω m t ) + E c o sin ( ω c t ) ] + c [ E m o sin ( ω m t ) + E c o sin ( ω c t ) ] 2 B[E_{mo} \sin (\omega_m t)+E_{co} \sin (\omega_c t)] + c [E_{mo} \sin (\omega_m t)+E_{co} \sin (\omega_c t)]^2 B [ E m o sin ( ω m t ) + E co sin ( ω c t )] + c [ E m o sin ( ω m t ) + E co sin ( ω c t ) ] 2
y(t)=B E m o sin ( ω m t ) + B E c o sin ( ω c t ) B E_{mo} \sin (\omega_m t)+B E_{co} \sin (\omega_c t) B E m o sin ( ω m t ) + B E co sin ( ω c t ) + c [ E m o 2 sin 2 ( ω m t ) + E c o 2 sin 2 ( ω c t ) + 2 E m o E c o sin ( ω m t ) × sin ( ω c t ) ] c[E_{mo}^2 \sin ^2(\omega_{m} t)+E_{co}^2 \sin ^2 (\omega_c t)+2 E_{mo} E_{co} \sin (\omega_m t) \times \sin \ (\omega_c t)] c [ E m o 2 sin 2 ( ω m t ) + E co 2 sin 2 ( ω c t ) + 2 E m o E co sin ( ω m t ) × sin ( ω c t )]
Amplitude Modulation Index → \rightarrow → Amplitude Modulation Index → \rightarrow → Amplitude Modulated Wave → \rightarrow → Amplitude Modulated Wave → \rightarrow → Band-Pass Filter
Amplitude Procedure To Generate Amplitude Modulated Wave L-1
Amplitude Modulated Wave
sin 2 ( ω t ) = 1 − cos ( 2 ω t ) 2 \sin^2 (\omega t) = \frac {1 - \cos (2 \omega t)}{2} sin 2 ( ω t ) = 2 1 − c o s ( 2 ω t ) ;
sin ( x ) sin ( y ) = 1 2 × [ − cos ( x + y ) + c o s ( x − y ) ] \sin (x) \sin(y) = \frac{1}{2} \times [ -\cos (x+y) + cos (x-y)] sin ( x ) sin ( y ) = 2 1 × [ − cos ( x + y ) + cos ( x − y )]
y ( t ) = B E m o sin ( ω m t ) + B E c o sin ( ω c t ) y(t)=B E_{mo} \sin (\omega_{m} t)+B E_{co} \sin (\omega_c t) y ( t ) = B E m o sin ( ω m t ) + B E co sin ( ω c t ) + c [ E m o 2 ( 1 − cos ( 2 ω m t ) 2 ) c [E_{mo}^2(\frac{1-\cos (2 \omega_m t)}{2}) c [ E m o 2 ( 2 1 − c o s ( 2 ω m t ) ) +E c o 2 ( 1 − cos ( 2 ω c t ) 2 ) E_{co}^2(\frac{1-\cos (2 \omega_c t)}{2}) E co 2 ( 2 1 − c o s ( 2 ω c t ) ) + E m o E c o cos ( ω c − ω m ) t E_{mo} E_{co} \cos {(\omega_c-\omega_m) t} E m o E co cos ( ω c − ω m ) t
− E m o E c o cos ( ω c + ω m ) t ] -E_{mo} E_{co} \cos {(\omega_c+\omega_m) t}] − E m o E co cos ( ω c + ω m ) t ]
= B E m o sin ( ω m t ) t ) B E_{mo} \sin ({\omega_m t}) t) B E m o sin ( ω m t ) t ) +B E c o sin ( ω c t ) B E_{co} \sin (\omega_c t) B E co sin ( ω c t ) -C E m o 2 2 cos ( 2 ω w t ) \frac{C E_{mo}^2}{2} \cos (2 \omega_{w} t) 2 C E m o 2 cos ( 2 ω w t ) - c E c o 2 2 cos ( 2 ω c t ) \frac{c E_{co}^2}{2} \cos (2 \omega_c t ) 2 c E co 2 cos ( 2 ω c t ) + c E m o E c 0 c o s ( ω c − ω m ) t − c c E_{mo} E_{c_0} \ cos {(\omega_c-\omega_{m}) t} - c c E m o E c 0 cos ( ω c − ω m ) t − c E m o E c o cos ( ω c + ω m ) t E_{mo} E_{co} \cos {(\omega_c+\omega_{m}) t} E m o E co cos ( ω c + ω m ) t + c ( E m o 2 + E c o 2 ) 2 \frac{c (E_{mo}^2 + E_{co}^2)}{2} 2 c ( E m o 2 + E co 2 )
Amplitude Modulation Index → \rightarrow → Amplitude Modulated Wave → \rightarrow → Amplitude Modulated Wave → \rightarrow → Band-Pass Filter → \rightarrow → Band-Pass Filter
Amplitude Procedure To Generate Amplitude Modulated Wave L-1
Band-Pass Filter
We saw that after passing through the square law device, the resultant wave has 6 frequencies.
ω m \omega_m ω m
ω c \omega_c ω c
2ω m \omega_m ω m
2ω c \omega_c ω c
( ω m − ω c ) (\omega_m-\omega_c) ( ω m − ω c )
( ω c − ω m ) (\omega_c-\omega_m) ( ω c − ω m )
ω c , ω c + ω m \omega_c, \omega_c + \omega_m ω c , ω c + ω m
ω c \omega_c ω c - ω m \omega_m ω m
Amplitude Modulated Wave → \rightarrow → Amplitude Modulated Wave → \rightarrow → Band-Pass Filter → \rightarrow → Band-Pass Filter → \rightarrow → Frequency Modulation
Amplitude Procedure To Generate Amplitude Modulated Wave L-1
Band-Pass Filter
At output of band-pass filter
y(t) = B E c o sin ( ω c t ) B E_{co} \sin (\omega_c t) B E co sin ( ω c t ) + c E m o E c o cos [ ( ω c − ω m ) t ] c E_{mo} E_{co} \cos [(\omega_c - \omega_m)t] c E m o E co cos [( ω c − ω m ) t ] - c E m o E c o cos [ ( ω c + ω m ) t ] c E_{mo} E_{co} \cos[(\omega_c + \omega_m)t] c E m o E co cos [( ω c + ω m ) t ]
Amplitude Modulated Wave → \rightarrow → Band-Pass Filter → \rightarrow → Band-Pass Filter → \rightarrow → Frequency Modulation → \rightarrow → Frequency Modulation Index
Amplitude Procedure To Generate Amplitude Modulated Wave L-1
Frequency Modulation
In frequency modulation the frequency of the carrier wave is charged in acceleration with the modulating(message) wave.
Carrier wave E c E_c E c = E c o sin ( ω c t ) E_{co} \sin (\omega_c t) E co sin ( ω c t )
Message wave E m o d E_{mod} E m o d = E m o sin ( ω m t ) E_{mo} \sin (\omega_m t) E m o sin ( ω m t )
E f m E_{fm} E f m = E c o sin ( ω c t + θ ) E_{co} \sin ( \omega_c t + \theta) E co sin ( ω c t + θ ) = E c o sin ( ω c t + θ ) E{co} \sin (\omega_c t + \theta) E co sin ( ω c t + θ )
θ → \theta \rightarrow θ → in accordance with message wave.
E f m = E c o sin ( ω c t + θ ) E_{fm} = E_{co} \sin (\omega_c t + \theta) E f m = E co sin ( ω c t + θ )
Band-Pass Filter → \rightarrow → Band-Pass Filter → \rightarrow → Frequency Modulation → \rightarrow → Frequency Modulation Index → \rightarrow → Thank You
Amplitude Procedure To Generate Amplitude Modulated Wave L-1
Frequency Modulation Index
If ω i \omega_i ω i is the instantaneous frequency of the frequency modulated wave.
ω i = ω c + Δ ω sin ( ω m t ) \omega_i = \omega_c + \Delta \omega \sin (\omega_m t ) ω i = ω c + Δ ω sin ( ω m t )
Angular frequency ω = 2 π ν = d θ d t \omega = 2 \pi \nu = \frac {d \theta }{dt} ω = 2 π ν = d t d θ
dθ \theta θ = ω \omega ω dt ⇒ θ = ∫ d θ = ∫ ω d t \Rightarrow \theta = \int{d\theta} = \int{\omega d t } ⇒ θ = ∫ d θ = ∫ ω d t =∫ ω i d t = ∫ [ ω c + Δ ω s i n ( ω m t ) ] d t \int {\omega_i dt} = \int{[\omega_c + \Delta \omega sin (\omega_m t) ]}dt ∫ ω i d t = ∫ [ ω c + Δ ω s in ( ω m t )] d t
Equation of frequency modulated wave
E f m = E c o sin [ ω c t − Δ ω ω m cos ( ω m t ) ] E_{fm} = E_{co} \sin [\omega_c t - \frac {\Delta \omega}{\omega_m} \cos (\omega_m t)] E f m = E co sin [ ω c t − ω m Δ ω cos ( ω m t )]
Frequency modulation index = Δ ω ω m \frac {\Delta \omega}{\omega_m} ω m Δ ω = Δ f f m \frac{\Delta f }{f_m} f m Δ f
Band-Pass Filter → \rightarrow → Frequency Modulation → \rightarrow → Frequency Modulation Index → \rightarrow → Thank You → \rightarrow →
Amplitude Procedure To Generate Amplitude Modulated Wave L-1
Thank You
Frequency Modulation → \rightarrow → Frequency Modulation Index → \rightarrow → Thank You → \rightarrow → → \rightarrow →
Resume presentation
Amplitude Procedure To Generate Amplitude Modulated Wave L-1 Amplitude and Phase Frequency Modulation, Procedure to Generate Amplitude Modulated Waves $\rightarrow$
$\rightarrow$ Amplitude and Phase Frequency Modulation, Procedure to Generate Amplitude Modulated Waves $\rightarrow$ Equation of Amplitude Modulated Wave $\rightarrow$ Amplitude Modulation Index