- A point mass is subjected to two simultaneous sinusoidal displacements in $x$ direction, $x_1(t)=A \sin (\omega t)$ and $x_2(t)=A \sin \left(\omega t+\frac{2 \pi}{3}\right)$. Adding a third sinusoidal displacement $x_3(t)=B \sin (\omega t+\phi)$ brings the mass to complete rest. The value of $B$ and $\phi$ are (2011)
- (A) $\sqrt{2} A, 3 \pi / 4$
- (B) $A, 4 \pi / 3$
- (C) $\sqrt{3} A, 5 \pi / 6$
- (D) $A, \pi / 3$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-14-chapter-06-problem-solving-simple-harmonic-motion-l-6_6-9qsw_27z6cw-01.jpg)
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-14-chapter-06-problem-solving-simple-harmonic-motion-l-6_6-9qsw_27z6cw-02.jpg)
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-14-chapter-06-problem-solving-simple-harmonic-motion-l-6_6-9qsw_27z6cw-03.jpg)