- $\ddot{x}+\gamma \dot{x}+\omega_0^2 x=\frac{F}{m} \cos at$
- The solution is a combination (superposition) of two different solution
- $x(t)=A e^{-\frac{\gamma}{2} t} \cos \omega_0 t+B e^{-\frac{\gamma}{2} t} \ sin \omega_0 t $
- $x_{p}$ = depends on the applied force
- As t become large, the solution
- A $e^{-\gamma / 2 t} \cos\omega_0 t$ + $Be^{-\gamma / 2 t} \sin\omega_0 t \rightarrow 0$
- We are left with steady state solution $\rightarrow$ $x_{\rho}(l)= x(t)$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-14-chapter-05-damped-harmonic-oscillator-l-5_6-lcmz0al8ggi-4.jpg)
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-14-chapter-05-damped-harmonic-oscillator-l-5_6-lcmz0al8ggi-5.jpg)