Damped Harmonic Oscillator L-5
Damped Harmonic Oscillator
Damped Harmonic Oscillator L-5
Damped Harmonic Oscillator
Damped Harmonic Oscillator L-5
Forced Free Oscillator
mx¨=−kx+Fcosωt
x¨+ω02x=mFcosωt
r−x(t)=(Acosω⋅t+Bsinω⋅t)
+m(ω02−ω2)Fcosωt
Damped Harmonic Oscillator L-5
Forced Damped Harmonic Oscillator
Swing in the park.
Pendulum in clocks - you need a1 battery to keep it running.
mx¨=−bx˙−kx+Fcosωt(ω=ω0)
x¨+rx˙+ω02x=Fcosωt
Equation for forced damped harmonic oscillator.
Recall from forced undamped oscillator.
Motion was a combination of two diffrent frequences →ω0 and ω
Damped Harmonic Oscillator L-5
Forced Damped Harmonic Oscillator
- Resonance
- At ω=ω0 the amplitude of the oscillator grow lineraly with time.
Damped Harmonic Oscillator L-5
Undamped Oscillator
x¨+ω02x=mFcosωt
x(t)=(Acosω2t+Bsinωt)+m(ω12−ω2)Fcosωt
Damped Harmonic Oscillator L-5
Undamped Oscillator
x¨+γx˙+ω02x=mFcosat
The solution is a combination (superposition) of two different solution
x(t)=Ae−2γtcosω0t+Be−2γt sinω0t
xp = depends on the applied force
As t become large, the solution
A e−γ/2tcosω0t + Be−γ/2tsinω0t→0
We are left with steady state solution → xρ(l)=x(t)
Damped Harmonic Oscillator L-5
Steady State Solution
Steady State Solution for a Forced Damped Harmonic Oscillator.
Ae−2γtcosωt + Be−2γtsinωt→0
Transient solution have died down.
We are left with only the steady state solution motion.
- x¨+γx˙+ω+02x=mFcosωt
Recall in undamped oscillator
- x¨+ω02x=mFcosωt
Damped Harmonic Oscillator L-5
Steady State Solution
We had oscillator a solution x(t) = A cosωt
- x¨+γx˙+ω02x=mFcosωt
We want to try the solution of the form x(t) = A cosωt
Substitute this is the equation of motion
x˙(t)=−ωAsinωt
x¨(t)=−ωAcosωt
−ω2Acosωt+γ(−ωA)sinωt+ω02cosωt=mFcosωt
LHS contains both cosωt and sinωt.
RHS contains only cosωt.
Damped Harmonic Oscillator L-5
Steady State Solution
x(t) = Acosωt+Bsinωt
x˙(t)=−ωAsinωt+ωBcosωt
x¨(t)=−ω2Acosωt−ω2Bsinωt
(−ω2A+γωB+ω02A)cosωt
+(−ω2B−γωA+ω02B)sinωt
=mFcosωt
Damped Harmonic Oscillator L-5
Steady State Solution
−ω2A+γωB+ω02A=mA
−ω2B−γωA+ω02B=0
Two equation and two unknowns.
- B=(ω02−ω2γω)A
Damped Harmonic Oscillator L-5
Steady State Solution
A=(ω02−ω2)2+γ2ω2(ω02−ω2)(mF)
B=(ω02−ω2)γωA
=(ω02−ω2)2+γ2ω2γω(mF)
Steady - state solution
- x(t)=[(ω02−ω2)2+γ2ω2(ω02−ω2) as ωt+(ω2−ωy+γ2ωγωsinωt]mF
Damped Harmonic Oscillator L-5
Steady State Solution
x(t)=(ω02−ω2+γ2ω2(ω02−ω2)(mF)cosωt
+(ω02−ω2)+γ2ω2γω(mF)sinωt
x(t) is periodic with the same frequency.
i.e, ω as the frequency of the applied force.
It contains both cosωt and sinωt terms.
Damped Harmonic Oscillator L-5
Amplitude of Motion
Amplitude of Motion (The Phase of Motion)
x(t)=(ω02−ω2)2+γ2ω2(ω02−ω2)(mE)cosωt
+(ω02−ω2)2+γ2ω2γω(mF)sinωt
(ω02−ω2)2+γ2ω2ω02−ω2 =
(ω02−ω2)2+γ2ω21((ω02−ω2)2+γ2ω2ω02−ω2)
(ω2−ω)2+γ2ω2γω=
(ω02−ω2)2+γ2ω21((ω02−ω2)2+γ2ω2γω)
Damped Harmonic Oscillator L-5
Amplitude of Motion
∣c1∣⩽1∣c2∣⩽1c12+c22=1
x(t)=m(ω02−ω0)2+γ2ω2Fcos(ωt−ϕ)
c1=cosϕ=(ω02−ω2)+γ2ω2ω02−ω2
c2=sinϕ=(ω02−ω2)2+γ2a2γω
tanϕ=(ω02−ω2)γω
- The steady state solution lags behind the applied force.
Damped Harmonic Oscillator L-5
Amplitude
Amplitude m(ω22−ω2)+γ2ω2F , ϕ=−(ω12−ω2)γω
Same frequency on the applied force
Damped Harmonic Oscillator L-5
Resonance
dωdA=0
dωdA=−mF21(ω02−ω2)2+γ2ω2)3/21×1(2(ω02−ω2)×−2ω+2γ2ω) =0
Damped Harmonic Oscillator L-5
Resonance
2(ω02−ω2)(−2ω)+2γ2ω=0
−2(ω02−ω2)=−γ2
or ω02−ω2=2γ2
ω2=ω02−2γ2
ω=ω0(1−2ω02γ2)21
Damped Harmonic Oscillator L-5
Resonance
For γ<<ω0
ω=ω0(1−4ω02γ2)
=ω0−tω0γ2≃ω0
A(ω) = (ω02−ω2)2+γ2ω2c
At frequency ω=ω0, the amplitude of steady state motion becomes large.
Damped Harmonic Oscillator L-5
Power
Power supplied by the force = Fv
Power = Fv = −ωAFcosωt.sin(ωt−ϕ)
- = −ωAF(cosωtsinωtcosϕ−cos2ωtsinϕ)
Power = −ωAF(cosωtsinωtcosϕ−cos2ωtsinϕ)
Damped Harmonic Oscillator L-5
Average power
CycleAverage power=T1∫0TPower(t)dt
= −ωAF[T1∫0Tcosωtsinωtdt⋅cosϕ−T1∫0Tcos2ωtsinϕdt]
T=ω2π
∫0Tcosωtsinωtdt=0
T1∫cos2ωtdt=21
Damped Harmonic Oscillator L-5
Average power
Average power = 2ωAFsinϕ
sinϕ = Power factor
This will be maximum value sinϕ is maximum.
Average power= m(ω2−ω02)+x2γ2ωF2sinϕ
sinϕ∣maximum =1⇒ϕ=2π⇒cosϕ=0
m(ω2−ω02)+x2γ2ω02−ω2=0→ω02=ω2
Damped Harmonic Oscillator L-5
Average Power
Damped Harmonic Oscillator L-5
Conclude
(1) Periodic Motion
(ii) Simple Harmonic Motion
mx¨=−kx
x(t)=Acosωt+Bsinωt,ω=mk
Damped Harmonic Oscillator L-5
Conclude
Resonance in forced undamped harmonic oscillation
Damping into the system
Friction
Velocity Dependent Damped
Forced damped harmonic oscillation
Damped Harmonic Oscillator L-5
Thank You
Damped Harmonic Oscillator L-5 Damped Harmonic Oscillator $\rightarrow$ $\rightarrow$ Damped Harmonic Oscillator $\rightarrow$ Damped Harmonic Oscillator $\rightarrow$ Forced Free Oscillator