- Case (II): $\omega_0 \gg \gamma$
- $\ddot{x}+\gamma \dot{x}+\omega_0^2 x(t)=0 \Rightarrow \ddot{x}+\omega_0^2 x(t)=0$
- x = A cos $\omega_0$ t + B sin $\omega_0$ t
- x(t) = A cos $\omega_0$ t (B = 0)
- We have $x(t=1)=A$, and $\dot{x}(t=0)=0$
- $x(t)=A \cos \omega_0 t$
- Correspondence to x(t=0)= A and $\dot{x}(t=0) = 0$
- If there is damping, the amplitude decrease slowly .
- $\gamma \neq 0 \Rightarrow x(t)= A(t) cos \omega_0 t$
- We want to find A(t). Also, Find how much evergy is lost due to friction.
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-14-chapter-04-force-oscillation-of-undamped-damped-oscillatormotion-l-4_6-irxoxk-b20e-21.jpg)