- $F_{spring} = -k(l-y)$
- $F_m$ = mg
- Displacement is downwards and the force is upwards.
- Net force = $k(l-y)-mg$ = -ky upwards
- or F= -ky downwards
- Now F = mg
- $m \frac{d^2 y}{dt^2}=-ky \text{or} \frac{d^2 g}{d t^2}=-\frac{k}{m} g$
- $\omega^2=\frac{k}{m}$
![image](https://temp-public-img-folder.s3.ap-south-1.amazonaws.com/sathee.prutor.images/subject-images/iitpal/image/physics-class-11-unit-14-chapter-03-examples-of-simple-harmonic-motion-l-3_6-zrgbjwbi2ie-4.jpg)